Krylov subspace methods (Continued)

- Practical variants: restarting and truncating
- Symmetric case: The link with the Lanczos algorithm
- The Conjugate Gradient algorithm
- See Chapter 6 of text for details.

Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.
First remedy: Restart. Fix m (dim. of subspace)
ALGORITHM : 1. Restarted GMRES (resp. Arnoldi)

1. (Re)-Start: Compute $r_{0}=b-A x_{0}$, Set: $v_{1}=r_{0} /\left(\beta:=\left\|r_{0}\right\|_{2}\right)$.
2. Arnoldi Process: generate \bar{H}_{m} and V_{m}.
3. Compute $y_{m}=\boldsymbol{H}_{m}^{-1} \beta e_{1}$ (FOM), or

$$
y_{m}=\operatorname{argmin}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} y\right\|_{2}(\text { GMRES })
$$

4. $x_{m}=x_{0}+V_{m} y_{m}$
5. If $\left\|r_{m}\right\|_{2} \leq \epsilon\left\|r_{0}\right\|_{2}$ stop
else set $x_{0}:=x_{m}$ and go to 1 .

Second remedy: Truncate the orthogonalization

Formula for v_{j+1} replaced by:

$$
h_{j+1, j} v_{j+1}=A v_{j}-\sum_{i=j-k+1}^{j} h_{i j} v_{i}
$$

$>$ Each v_{j} is made orthogonal to the previous $k v_{i}$'s.
$>x_{m}$ still computed as $x_{m}=x_{0}+V_{m} H_{m}^{-1} \beta e_{1}$.
$>$ It can be shown that this is an oblique projection process.
> IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

The direct version of IOM [DIOM]:

$>$ Write the LU decomposition of \boldsymbol{H}_{m} as $\boldsymbol{H}_{m}=\boldsymbol{L}_{m} \boldsymbol{U}_{m}$

$$
x_{m}=x_{0}+V_{m} U_{m}^{-1} \quad L_{m}^{-1} \beta e_{1} \equiv x_{0}+P_{m} z_{m}
$$

	L_{m}	U_{m}
Structure of L_{m}, U_{m} when $k=3$	$\left[\begin{array}{lllllll}1 & & & & & \\ x & 1 & & & & \\ & x & 1 & & & \\ & & x & 1 & & \\ & & & x & 1 & \\ & & & & x & \\ & & & & \end{array}\right.$	$\left[\begin{array}{llllll}x & x & x & & & \\ & x & x & x & & \\ & & x & x & x & \\ & & & x & x & x \\ & & & & x & x \\ & & & & & \end{array}\right]$

$>p_{m}=u_{m m}^{-1}\left[v_{m}-\sum_{i=m-k+1}^{m-1} u_{i m} p_{i}\right] \quad z_{m}=\left[\begin{array}{c}z_{m-1} \\ \zeta_{m}\end{array}\right]$
$>$ Can update x_{m} at each step:

$$
x_{m}=x_{m-1}+\zeta_{m} \boldsymbol{p}_{m}
$$

Algorithm:

Until convergence do:

$$
\text { Update LU factorization of } \boldsymbol{H}_{m} \rightarrow \boldsymbol{H}_{m}=\boldsymbol{L}_{m} \boldsymbol{U}_{m}
$$

$p_{m}=u_{m m}^{-1}\left[v_{m}-\sum_{i=m-k+1}^{m-1} u_{i m} p_{i}\right]$
$x_{m}=x_{m-1}+\zeta_{m} \boldsymbol{p}_{m}$
$\boldsymbol{h}_{m+1, m} \boldsymbol{v}_{m+1}=\boldsymbol{A} \boldsymbol{v}_{m}-\sum_{i=m-k+1}^{m} \boldsymbol{h}_{i m} \boldsymbol{v}_{i}$ (Arnoldi step)
Enddo
$>$ Requires $2 k+1$ vectors [in addition to solution]

Note: | Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the $\boldsymbol{H}_{\boldsymbol{m}}$ matrix
> CG-like formulation of IOM called DIOM [YS, 1982]
> ORTHORES(k) [Young \& Jea '82] equivalent to DIOM(k)
$>$ SYMMLQ [Paige and Saunders, '77] uses LQ factorization of $\boldsymbol{H}_{\boldsymbol{m}}$.
$>$ Can incorporate partial pivoting in LU factorization of $\boldsymbol{H}_{\boldsymbol{m}}$

The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi's method:

$$
H_{m}=V_{m}^{T} A V_{m}
$$

must be symmetric. Therefore
Theorem. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix \boldsymbol{H}_{m} is symmetric tridiagonal:

$$
\begin{aligned}
h_{i j} & =0 \quad 1 \leq i<j-1 ; \quad \text { and } \\
h_{j, j+1} & =h_{j+1, j}, \quad j=1, \ldots, m
\end{aligned}
$$

$>$ We can write

$$
\boldsymbol{H}_{m}=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \tag{1}\\
\boldsymbol{\beta}_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \beta_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \boldsymbol{\beta}_{m} & \alpha_{m}
\end{array}\right]
$$

The v_{i} 's satisfy a 3-term recurrence [Lanczos Algorithm]:

$$
\beta_{j+1} v_{j+1}=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1}
$$

> Simplified version of Arnoldi's algorithm for sym. systems.

$$
\text { Symmetric matrix + Arnoldi } \rightarrow \text { Symmetric Lanczos }
$$

The Lanczos algorithm

ALGORITHM:2. Lanczos

1. Choose an initial vector v_{1}, s.t. $\left\|v_{1}\right\|_{2}=1$ Set $\beta_{1} \equiv 0, v_{0} \equiv 0$
2. For $j=1,2, \ldots, m$ Do:
3. $w_{j}:=A v_{j}-\beta_{j} v_{j-1}$
4. $\alpha_{j}:=\left(w_{j}, v_{j}\right)$
5. $\quad w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\quad \beta_{j+1}:=\left\|w_{j}\right\|_{2}$. If $\beta_{j+1}=0$ then Stop
7. $\quad v_{j+1}:=w_{j} / \beta_{j+1}$
8. EndDo

Lanczos algorithm for linear systems

> Usual orthogonal projection method setting:

- $L_{m}=K_{m}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}$
- Basis $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ of \boldsymbol{K}_{m} generated by the Lanczos algorithm
$>$ Three different possible implementations.
(1) Arnoldi-like;
(2) Exploit tridiagonal nature of $\boldsymbol{H}_{\boldsymbol{m}}$ (DIOM);
(3) Conjugate gradient - derived from (2)

ALGORITHM : 3. Lanczos Method for Linear Systems

1. Compute $r_{0}=b-A x_{0}, \beta:=\left\|r_{0}\right\|_{2}$, and $v_{1}:=r_{0} / \beta$
2. For $j=1,2, \ldots, m$ Do:
3. $w_{j}=A v_{j}-\beta_{j} v_{j-1}$ (If $j=1$ set $\left.\beta_{1} v_{0} \equiv 0\right)$
4. $\alpha_{j}=\left(w_{j}, v_{j}\right)$
5. $\quad w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\quad \boldsymbol{\beta}_{j+1}=\left\|\boldsymbol{w}_{j}\right\|_{2}$. If $\boldsymbol{\beta}_{j+1}=0$ set $m:=j$ and $g o$ to 9
7. $v_{j+1}=w_{j} / \beta_{j+1}$
8. EndDo
9. Set $T_{m}=\operatorname{tridiag}\left(\boldsymbol{\beta}_{i}, \alpha_{i}, \beta_{i+1}\right)$, and $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$.
10. Compute $y_{m}=T_{m}^{-1}\left(\beta e_{1}\right)$ and $x_{m}=x_{0}+V_{m} y_{m}$

ALGORITHM : 4. D-Lanczos

1. Compute $r_{0}=b-A x_{0}, \zeta_{1}:=\beta:=\left\|r_{0}\right\|_{2}$, and $v_{1}:=\frac{r_{0}}{\beta}$
2. Set $\lambda_{1}=\beta_{1}=0, p_{0}=0$
3. For $m=1,2, \ldots$, until convergence Do:
4. Compute $w:=A v_{m}-\beta_{m} v_{m-1}$ and $\alpha_{m}=\left(w, v_{m}\right)$
5. If $m>1$ compute $\lambda_{m}=\frac{\beta_{m}}{\eta_{m-1}}$ and $\zeta_{m}=-\lambda_{m} \zeta_{m-1}$
6. $\eta_{m}=\alpha_{m}-\lambda_{m} \boldsymbol{\beta}_{m}$
7. $\boldsymbol{p}_{m}=\eta_{m}^{-1}\left(v_{m}-\boldsymbol{\beta}_{m} \boldsymbol{p}_{m-1}\right)$
8. $x_{m}=x_{m-1}+\zeta_{m} \boldsymbol{p}_{m}$
9. If x_{m} has converged then Stop
10. $w:=w-\alpha_{m} v_{m}$
11. $\boldsymbol{\beta}_{m+1}=\|w\|_{2}, v_{m+1}=w / \boldsymbol{\beta}_{m+1}$
12. EndDo

The Conjugate Gradient Algorithm (A S.P.D.)

$>$ In D-Lanczos, $r_{m}=$ scalar $\times v_{m-1}$ and $p_{m}=$ scalar $\times\left[v_{m}-\beta_{m} \boldsymbol{p}_{m-1}\right]$
$>$ And we have $x_{m}=x_{m-1}+\xi_{m} p_{m}$

$$
\begin{array}{l|l}
\text { So there must exist an } \\
\text { Ste of the form: } & \begin{array}{l}
\text { 1. } \boldsymbol{p}_{m+1}=\boldsymbol{r}_{m}+\boldsymbol{\beta}_{m} \boldsymbol{p}_{m} \\
\text { 2. } \boldsymbol{x}_{m+1}=\boldsymbol{x}_{m}+\xi_{m+1} \boldsymbol{p}_{m+1} \\
\text { 3. } \boldsymbol{r}_{m+1}=r_{m}-\xi_{m+1} A p_{m+1}
\end{array}
\end{array}
$$

$>$ Note: \boldsymbol{p}_{m} is scaled differently and $\boldsymbol{\beta}_{m}$ is not the same
.. In CG, index of \boldsymbol{p}_{m} aligned with that of $\boldsymbol{r}_{m}-$ so \boldsymbol{p}_{j} replaced by \boldsymbol{p}_{j-1}.
$>$ Note: the p_{i} 's are \boldsymbol{A}-orthogonal
$>$ The $r_{i}^{\prime \prime}$ s are orthogonal.

The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: $r_{0}:=b-A x_{0}, p_{0}:=r_{0}$.
2. Iterate: Until convergence do,
(a) $\alpha_{j}:=\left(r_{j}, r_{j}\right) /\left(A p_{j}, p_{j}\right)$
(b) $x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
(c) $r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
(d) $\boldsymbol{\beta}_{j}:=\left(\boldsymbol{r}_{j+1}, \boldsymbol{r}_{j+1}\right) /\left(\boldsymbol{r}_{j}, \boldsymbol{r}_{j}\right)$
(e) $\boldsymbol{p}_{j+1}:=\boldsymbol{r}_{j+1}+\boldsymbol{\beta}_{j} \boldsymbol{p}_{j}$

- $r_{j}=$ scaling $\times \boldsymbol{v}_{j+1}$. The r_{j} 's are orthogonal.
- The p_{j} 's are A-conjugate, i.e., $\left(A p_{i}, p_{j}\right)=0$ for $i \neq j$.
> Question: How to apply preconditioning?

A bit of history. From the 1952 CG article:

"The method of conjugate gradients was developed independently by E. Stiefel of the Institute of Applied Mathematics at Zurich and by M. R. Hestenes with the cooperation of J. B. Rosser, G. Forsythe, and L. Paige of the Institute for Numerical Analysis, National Bureau of Standards. The present account was prepared jointly by M. R. Hestenes and E. Stiefel during the latter's stay at the National Bureau of Standards. The first papers on this method were given by E. Stiefel [1952] and by M. R. Hestenes [1951]. Reports on this method were given by E. Stiefel and J. B. Rosser at a Symposium on August 23-25, 1951. Recently, C. Lanczos [1952] developed a closely related routine based on his earlier paper on eigenvalue problem [1950]. Examples and numerical tests of the method have been by R. Hayes, U. Hoschstrasser, and M. Stein."

