CONVERGENCE THEORY

- Background: Best uniform approximation;
- Chebyshev polynomials;
- Analysis of the CG algorithm;
- Analysis in the non-Hermitian case (short)

The Min-Max Problem:

$$
\rho_{n}(f)=\min _{p \in \mathbb{P}_{n}} \max _{x \in[a, b]}|f(t)-p(t)|
$$

$>$ If f is continuous, best approximation to f on $[a, b]$ by polynomials of degree $\leq n$ exists and is unique
$>\ldots$ and $\lim _{n \rightarrow \infty} \rho_{n}(f)=0$ (Weierstrass theorem).
Question: How to find the best polynomial?
Answer: |Chebyshev's equi-oscillation theorem.

Background: Best uniform approximation

We seek a function ϕ (e.g. polynomial) which deviates as little as possible from f in the sense of the $\|\cdot\|_{\infty}$-norm, i.e., we seek the

$$
\min _{\phi} \max _{t \in[a, b]}|f(t)-\phi(t)|=\min _{\phi}\|f-\phi\|_{\infty}
$$

where ϕ is in a finite dimensional space (e.g., space of polynomials of degree $\leq n$)
> Solution is the "best uniform approximation to f "
> Important case: ϕ is a polynomial of degree $\leq n$
$>$ In this case ϕ belongs to \mathbb{P}_{n}

[^0]Chebyshev equi-oscillation theorem: \boldsymbol{p}_{n} is the best uniform approximation to f in $[a, b]$ if and only if there are $n+2$ points $t_{0}<t_{1}<\ldots<t_{n+1}$ in $[a, b]$ such that

$$
f\left(t_{j}\right)-p_{n}\left(t_{j}\right)=c(-1)^{j}\left\|f-p_{n}\right\|_{\infty} \quad \text { with } \quad c= \pm 1
$$

[p_{n} 'equi-oscillates' $n+2$ times around f]

Application: Chebyshev polynomials

Question: Among all monic polynomials of degree $n+1$ which one minimizes the infinity norm? Problem:

$$
\text { Minimize }\left\|t^{n+1}-a_{n} t^{n}-a_{n-1} t^{n-1}-\cdots-a_{0}\right\|_{\infty}
$$

Reformulation: Find the best uniform approximation to t^{n+1} by polynomials p of degree $\leq n$.
$>t^{n+1}-p(t)$ should be a polynomial of degree $n+1$ which equi-oscillates $n+2$ times.

2-5

C_{k} Equi-Oscillates $k+1$ times around zero.
$>$ Normalize C_{n+1} so that leading coefficient is 1
The minimum of $\left\|t^{n+1}-p(t)\right\|_{\infty}$ over $p \in \mathbb{P}_{n}$ is achieved when $t^{n+1}-p(t)=$ $\frac{1}{2^{n}} C_{n+1}(t)$.
> Another important result:
Let $[\alpha, \beta]$ be a non-empty interval in \mathbb{R} and let γ be any real scalar outside the interval $[\alpha, \beta]$. Then the minimum

$$
\begin{aligned}
& \qquad \min _{p \in \mathbb{P}_{k}, p(\gamma)=1} \max _{t \in[\alpha, \beta]}|p(t)| \\
& \text { is reached by the polynomial: } \quad \hat{C}_{k}(t) \equiv \frac{C_{k}\left(1+2 \frac{\alpha-t}{\beta-\alpha}\right)}{C_{k}\left(1+2 \frac{\alpha-\gamma}{\beta-\alpha}\right)} .
\end{aligned}
$$

> Define Chebyshev polynomials:

$$
C_{k}(t)=\cos \left(k \cos ^{-1} t\right) \text { for } k=0,1, \ldots, \text { and } t \in[-1,1]
$$

$>$ Observation: C_{k} is a polynomial of degree k, because:
$>$ The C_{k} 's satisfy the three-term recurrence:

$$
C_{k+1}(t)=2 t C_{k}(t)-C_{k-1}(t)
$$

with $C_{0}(t)=1, C_{1}(t)=t$.Show the above recurrence relationCompute $C_{2}, C_{3}, \ldots, C_{8}$Show that for $|t|>1$ we have

$$
C_{k}(t)=\operatorname{ch}\left(k \operatorname{ch}^{-1}(t)\right)
$$

12-6 Text: 6.11 - cheby

Convergence Theory for CG
$>$ Approximation of the form $x=x_{0}+p_{m-1}(A) r_{0}$. with $x_{0}=$ initial guess, $r_{0}=b-A x_{0}$;
$>$ Recall property: x_{m} minimizes $\left\|x-x_{*}\right\|_{A}$ over $x_{0}+K_{m}$
Consequence: Standard result
Let $x_{m}=m$-th CG iterate, $x_{*}=$ exact solution and

$$
\begin{gathered}
\eta=\frac{\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }} \\
\text { Then: }\left\|x_{*}-x_{m}\right\|_{A} \leq \frac{\left\|x_{*}-x_{0}\right\|_{A}}{C_{m}(1+2 \eta)}
\end{gathered}
$$

where $C_{m}=$ Chebyshev polynomial of degree m.
$>$ Alternative expression. From $C_{k}=c h\left(k c h^{-1}(t)\right)$:

$$
\begin{gathered}
C_{m}(t)=\frac{1}{2}\left[\left(t+\sqrt{t^{2}-1}\right)^{m}+\left(t+\sqrt{t^{2}-1}\right)^{-m}\right] \\
\geq \frac{1}{2}\left(t+\sqrt{t^{2}-1}\right)^{m} . \text { Then: } \\
C_{m}(1+2 \eta) \geq \frac{1}{2}\left(1+2 \eta+\sqrt{(1+2 \eta)^{2}-1}\right)^{m} \\
\geq \frac{1}{2}(1+2 \eta+2 \sqrt{\eta(\eta+1)})^{m} .
\end{gathered}
$$

$>$ Next notice that:

$$
\begin{aligned}
1+2 \eta+2 \sqrt{\eta(\eta+1)} & =(\sqrt{\eta}+\sqrt{\eta+1})^{2} \\
& =\frac{\left(\sqrt{\lambda_{\min }}+\sqrt{\lambda_{\max }}\right)^{2}}{\lambda_{\max }-\lambda_{\min }}
\end{aligned}
$$

Theory for Nonhermitian case

> Much more difficult!
> No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc..
$>$ Can get a general a-priori - a-posteriori error bound

$$
\begin{aligned}
& =\frac{\sqrt{\lambda_{\max }}+\sqrt{\lambda_{\min }}}{\sqrt{\lambda_{\max }}-\sqrt{\lambda_{\min }}} \\
& =\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}
\end{aligned}
$$

where $\kappa=\kappa_{2}(A)=\lambda_{\text {max }} / \lambda_{\text {min }}$.
$>$ Substituting this in previous result yields

$$
\left\|x_{*}-x_{m}\right\|_{A} \leq 2\left[\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right]^{m}\left\|x_{*}-x_{0}\right\|_{A} .
$$

> Compare with steepest descent!

12-10
2-10
Text: 6.11 - theory
Convergence results for nonsymmetric case
$>$ Methods based on minimum residual better understood.
$>$ If $\left(A+A^{T}\right)$ is positive definite $((A x, x)>0 \forall x \neq 0)$, all minimum residualtype methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.
> Convergence results based on comparison with one-dim. MR [Eisenstat, Elman, Schultz 1982] \rightarrow not sharp.

MR-type methods: if $\boldsymbol{A}=\boldsymbol{X} \Lambda X^{-1}, \Lambda$ diagonal, then

$$
\left\|b-A x_{m}\right\|_{2} \leq \operatorname{Cond}_{2}(X) \min _{p \in \mathcal{P}_{m-1}, p(0)=1} \max _{\lambda \in \Lambda(A)}|p(\lambda)|
$$

($\mathcal{P}_{m-1} \equiv$ set of polynomials of degree $\leq m-1, \Lambda(A) \equiv$ spectrum of A) 12-12

[^0]: 12-2

