CONVERGENCE THEORY	Background: Best uniform approximation
 Background: Best uniform approximation; Chebyshev polynomials; Analysis of the CG algorithm; Analysis in the non-Hermitian case (short) 	We seek a function ϕ (e.g. polynomial) which deviates as little as possible from f in the sense of the $\ .\ _{\infty}$ -norm, i.e., we seek the $\min_{\phi} \max_{t \in [a,b]} f(t) - \phi(t) = \min_{\phi} f - \phi _{\infty}$ where ϕ is in a finite dimensional space (e.g., space of polynomials of degree $\leq n$) Solution is the "best uniform approximation to f " Important case: ϕ is a polynomial of degree $\leq n$ In this case ϕ belongs to \mathbb{P}_n
	12-2 Text: 6.11 – cheby
The Min-Max Problem: $ ho_n(f) = \min_{p \in \mathbb{P}_n} \; \max_{x \in [a,b]} \; f(t) - p(t) $	$\begin{array}{l} \hline \text{Chebyshev equi-oscillation theorem:} \ p_n \ \text{is the best uniform approximation} \\ \hline \text{to } f \ \text{in } [a,b] \ \text{if and only if there are } n+2 \ \text{points} \ t_0 < t_1 < \ldots < t_{n+1} \ \text{in} \\ [a,b] \ \text{such that} \\ \hline f(t_j) - p_n(t_j) = c(-1)^j \ f - p_n\ _\infty \text{with} c = \pm 1 \end{array}$
 If <i>f</i> is continuous, best approximation to <i>f</i> on [<i>a</i>, <i>b</i>] by polynomials of degree ≤ <i>n</i> exists and is unique and lim_{n→∞} ρ_n(<i>f</i>) = 0 (Weierstrass theorem). Question: How to find the best polynomial? Answer: Chebyshev's equi-oscillation theorem. 	[p_n 'equi-oscillates' $n + 2$ times around f]
12-3 Text: 6.11 – cheby	12-4 Text: 6.11 – cheby

Application: Chebyshev polynomials	Define Chebyshev polynomials:
Question: Among all monic polynomials of degree $n + 1$ which one minimizes the infinity norm? Problem: Minimize $ t^{n+1} - a_n t^n - a_{n-1} t^{n-1} - \dots - a_0 _{\infty}$	$C_k(t) = \cos(k \cos^{-1} t)$ for $k = 0, 1,,$ and $t \in [-1, 1]$ \blacktriangleright Observation: C_k is a polynomial of degree k , because:
Reformulation: Find the best uniform approximation to t^{n+1} by polynomials p of degree $\leq n$. $t^{n+1} - p(t)$ should be a polynomial of degree $n + 1$ which equi-oscillates $n + 2$ times.	The C_k 's satisfy the three-term recurrence : with $C_0(t) = 1$, $C_1(t) = t$. 1 Show the above recurrence relation 2 Compute C_2, C_3, \dots, C_8
	Angle Show that for $ t > 1$ we have $C_k(t) = \operatorname{ch}(k \operatorname{ch}^{-1}(t))$
12-5 Text: 6.11 – cheby	12-6 Text: 6.11 – cheby
12-5 Text: 6.11 - cheby ► C _k Equi-Oscillates k + 1 times around zero. ► Normalize C _{n+1} so that leading coefficient is 1 The minimum of $ t^{n+1} - p(t) _{\infty}$ over $p \in \mathbb{P}_n$ is achieved when $t^{n+1} - p(t) = \frac{1}{2^n}C_{n+1}(t)$.	Text: 6.11 – cheby Convergence Theory for CG Approximation of the form $x = x_0 + p_{m-1}(A)r_0$. with x_0 = initial guess, $r_0 = b - Ax_0$;
 C_k Equi-Oscillates k + 1 times around zero. Normalize C_{n+1} so that leading coefficient is 1 The minimum of tⁿ⁺¹ - p(t) _∞ over p ∈ P_n is achieved when tⁿ⁺¹ - p(t) = 	 Convergence Theory for CG ▶ Approximation of the form x = x₀ + p_{m-1}(A)r₀. with x₀ = initial guess,

> Alternative expression. From $C_k = ch(kch^{-1}(t))$:	
$C_m(t) = rac{1}{2} \left[\left(t + \sqrt{t^2 - 1} ight)^m + \left(t + \sqrt{t^2 - 1} ight)^{-m} ight]$	$=rac{\sqrt{\lambda_{max}}+\sqrt{\lambda_{min}}}{\sqrt{\lambda_{max}}-\sqrt{\lambda_{min}}}$
$\geq rac{1}{2} \left(t + \sqrt{t^2 - 1} ight)^m$. Then:	$=rac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}$
	where $\kappa = \kappa_2(A) = \lambda_{max}/\lambda_{min}.$
$C_m(1+2\eta) \geq rac{1}{2} \left(1+2\eta + \sqrt{(1+2\eta)^2-1} ight)^m$	 Substituting this in previous result yields
$\geq rac{1}{2} \left(1+2\eta+2\sqrt{\eta(\eta+1)} ight)^m.$	$\left[\sqrt{\kappa}-1\right]^m$
Next notice that:	$\ x_*-x_m\ _A\leq 2\left[rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} ight]^m\ x_*-x_0\ _A.$
$1+2\eta+2\sqrt{\eta(\eta+1)}=\left(\sqrt{\eta}+\sqrt{\eta+1} ight)^2$,	Compare with stoppest descent!
$=rac{ig(\sqrt{\lambda_{min}}+\sqrt{\lambda_{max}}ig)^2}{\lambda_{max}-\lambda_{min}}$	Compare with steepest descent!
$12-9 _ Text: 6.11 - theory$	12-10 Text: 6.11 – theory
Theory for Nonhermitian case	Convergence results for nonsymmetric case
Theory for Nonhermitian case	Convergence results for nonsymmetric case
 <i>Theory for Nonhermitian case</i> Much more difficult! 	 <i>Convergence results for nonsymmetric case</i> Methods based on minimum residual better understood.
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc 	Methods based on minimum residual better understood.
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,), + their restarted and truncated versions, converge.
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,), + their restarted
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,), + their restarted and truncated versions, converge. Convergence results based on comparison with one-dim. MR [Eisenstat,
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,), + their restarted and truncated versions, converge. Convergence results based on comparison with one-dim. MR [Eisenstat, Elman, Schultz 1982] → not sharp. MR-type methods: if A = XΛX⁻¹, Λ diagonal, then
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,), + their restarted and truncated versions, converge. Convergence results based on comparison with one-dim. MR [Eisenstat, Elman, Schultz 1982] → not sharp.
 Much more difficult! No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc 	 Methods based on minimum residual better understood. If (A+A^T) is positive definite ((Ax, x) > 0 ∀x ≠ 0), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,), + their restarted and truncated versions, converge. Convergence results based on comparison with one-dim. MR [Eisenstat, Elman, Schultz 1982] → not sharp. MR-type methods: if A = XΛX⁻¹, Λ diagonal, then