Preconditioning

- Introduction to preconditioning
- Preconditioned iterations
- Preconditioned CG and GMRES.
- Basic preconditioners.
- ILU(0), ILU(p), ILUT preconditioners
- See Chapters 9, 10 of text for details.

Preconditioning – Basic principles

Basic idea:

Use Krylov subspace method on a modified system such as:

$$M^{-1}Ax = M^{-1}b.$$

- The matrix $M^{-1}A$ need not be formed explicitly; only need to solve Mw=v whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $M^{-1}v$ for an arbitrary vector v.
- We want: M close to A (system easier to solve) but operation $v \to M^{-1}v$ inexpensive (added cost not too high).

Left, Right, and Split preconditioning

Left preconditioning

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

$$AM^{-1}u=b$$
, with $x=M^{-1}u$

Split preconditioning: M is factored as $M = M_L M_R$.

$$M_L^{-1}AM_R^{-1}u=M_L^{-1}b$$
, with $x=M_R^{-1}u$

Preconditioned CG (PCG)

- Assume: A and M are both SPD.
- Can apply CG directly to systems

$$oldsymbol{M}^{-1}oldsymbol{A}oldsymbol{x} = oldsymbol{M}^{-1}oldsymbol{b}$$
 or $oldsymbol{A}oldsymbol{M}^{-1}oldsymbol{u} = oldsymbol{b}$

- Problem: loss of symmetry
- ightharpoonup Alternative: when $M = LL^T$ use split preconditioner option
- Second alternative: Observe that $M^{-1}A$ is self-adjoint with respect to M inner product:

$$(M^{-1}Ax,y)_M=(Ax,y)=(x,Ay)=(x,M^{-1}Ay)_M$$

Preconditioned CG (PCG)

ALGORITHM: 1 Preconditioned CG

- 1. Compute $r_0 := b Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
- 2. For j = 0, 1, ..., until convergence Do:

3.
$$\alpha_j := (r_j, z_j)/(Ap_j, p_j)$$

$$4. x_{j+1} := x_j + \alpha_j p_j$$

$$5. r_{j+1} := r_j - \alpha_j A p_j$$

6.
$$z_{j+1} := M^{-1}r_{j+1}$$

7.
$$\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$$

8.
$$p_{j+1} := z_{j+1} + \beta_j p_j$$

9. EndDo

Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

$$(M^{-1}Ax,y)_A=(AM^{-1}Ax,y)=(x,AM^{-1}Ay)=(x,M^{-1}Ay)_A$$

- Can obtain a similar algorithm
- ightharpoonup Assume that $M=\mathsf{Cholesky}$ product $M=LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$oldsymbol{L}^{-1} A oldsymbol{L}^{-T} u = oldsymbol{L}^{-1} oldsymbol{b}$$
 , with $x = oldsymbol{L}^T u$

Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by \hat{A} .

ALGORITHM: 2. CG with Split Preconditioner

- 1. Compute $r_0 := b Ax_0; \; \hat{r}_0 = L^{-1}r_0; \; p_0 := L^{-T}\hat{r}_0.$
- 2. For j = 0, 1, ..., until convergence Do:
- 3. $\alpha_j := (\hat{r}_j, \hat{r}_j)/(Ap_j, p_j)$
- $4. x_{j+1} := x_j + \alpha_j p_j$
- 5. $\hat{r}_{j+1} := \hat{r}_j \alpha_j L^{-1} A p_j$
- 6. $\beta_j := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j)$
- 7. $p_{j+1} := L^{-T}\hat{r}_{j+1} + \beta_j p_j$
- 8. EndDo
- The x_j 's produced by the above algorithm and PCG are identical (if same initial guess is used).

ALGORITHM: 3 . GMRES – (right) Preconditioned

- 1. Start: Choose x_0 and a dimension m
- 2. Arnoldi process:
 - ullet Compute $r_0=b-Ax_0,$ $eta=\|r_0\|_2$ and $v_1=r_0/eta.$
 - For j = 1, ..., m do
 - Compute $z_j := M^{-1}v_j$
 - Compute $w := Az_j$
 - for $i=1,\ldots,j$, do : $\left\{egin{aligned} h_{i,j} := (w,v_i) \ w := w h_{i,j}v_i \end{aligned}
 ight\}$
 - $-h_{j+1,1} = \|w\|_2; v_{j+1} = w/h_{j+1,1}$
 - ullet Define $V_m:=[v_1,....,v_m]$ and $ar{H}_m=\{h_{i,j}\}$.

- 3. Form the approximate solution: $x_m=x_0+M^{-1}V_my_m$ where $y_m=\mathrm{argmin}_y\|eta e_1-ar{H}_my\|_2$ and $e_1=[1,0,\dots,0]^T$.
- 4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

Remark: M is assumed to be the same at each step j. Situations may arise where M varies:

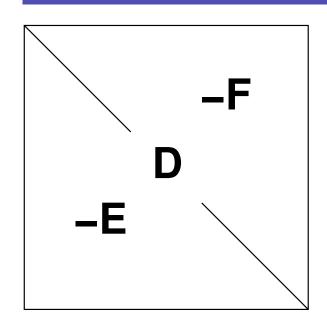
 $M \to M_j$. We need a 'Flexible' accelerator that allows this. Changes needed:

- 1) Save each z_j into matrix $Z_m = [z_1, \cdots, z_m]$.
- 2) Replace $M^{-1}V_m$ by Z_m to form solution in step 3.
- What optimality property is satisfied with (1) Left Preconditioned GM-RES, (2) Right Preconditioned GMRES; (3) Flexible GMRES?

Standard preconditioners

- Simplest preconditioner: M = Diag(A) ➤ poor convergence.
- Next to simplest: SSOR. $M = (D \omega E)D^{-1}(D \omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) ILU with level of fill p more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners
- Algebraic Multigrid Preconditioners

The SOR/SSOR preconditioner



> SOR preconditioning

$$M_{SOR} = (D - \omega E)$$

> SSOR preconditioning

$$M_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$$

 $ightharpoonup M_{SSOR} = LU$, L = lower unit matrix, U = upper triangular. One solve with $M_{SSOR} \approx$ same cost as a MAT-VEC.

➤ *k*-step SOR (resp. SSOR) preconditioning:

k steps of SOR (resp. SSOR)

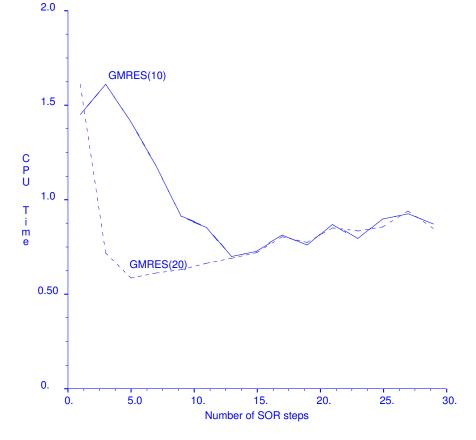
ightharpoonup Questions: Best ω ? For preconditioning can take $\omega=1$

$$M=(D-E)D^{-1}(D-F)$$

Observe: M = LU + R with $R = ED^{-1}F$.

ightharpoonup Best k? k=1 is rarely the best. Substantial difference in performance.

Iteration times versus k for SOR(k) preconditioned GM-RES



ILU(0) and *IC(0)* preconditioners

Notation:

$$NZ(X)=\{(i,j)\mid X_{i,j}
eq 0\}$$

Formal definition of ILU(0):

$$egin{aligned} A &= LU + R \ NZ(L) igcup NZ(U) = NZ(A) \ r_{ij} &= 0 ext{ for } (i,j) \ \in \ NZ(A) \end{aligned}$$

Constructive definition: Compute the LU factorization of A but drop any fill-in in L and U outside of Struct(A).

ightharpoonup ILU factorizations are often based on i, k, j version of GE.

What is the IKJ version of GE?

ALGORITHM: 4. Gaussian Elimination – IKJ Variant

```
1. For i = 2, ..., n Do:

2. For k = 1, ..., i - 1 Do:

3. a_{ik} := a_{ik}/a_{kk}

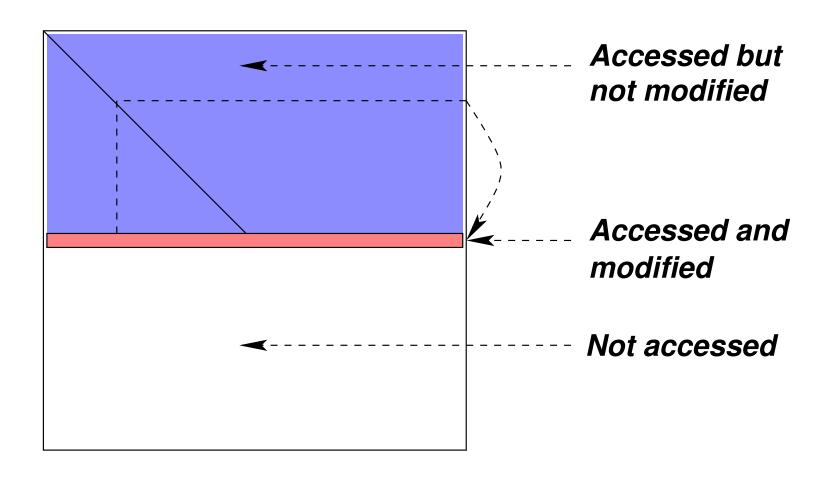
4. For j = k + 1, ..., n Do:

5. a_{ij} := a_{ij} - a_{ik} * a_{kj}

6. EndDo

7. EndDo

8. EndDo
```



ILU(0) – zero-fill ILU

ALGORITHM: 5 • ILU(0)

```
For i=1,\ldots,N Do:

For k=1,\ldots,i-1 and if (i,k)\in NZ(A) Do:

Compute a_{ik}:=a_{ik}/a_{kj}

For j=k+1,\ldots and if (i,j)\in NZ(A), Do:

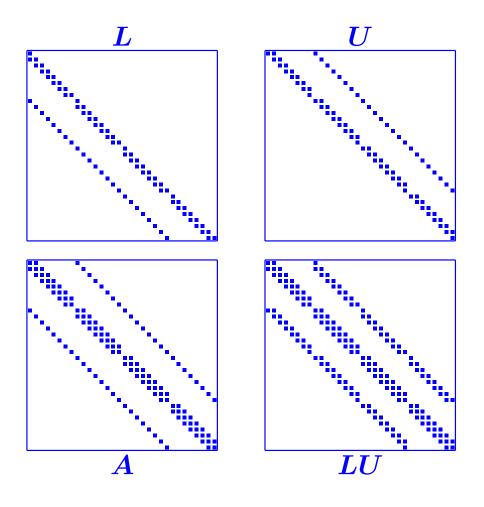
compute a_{ij}:=a_{ij}-a_{ik}a_{k,j}.

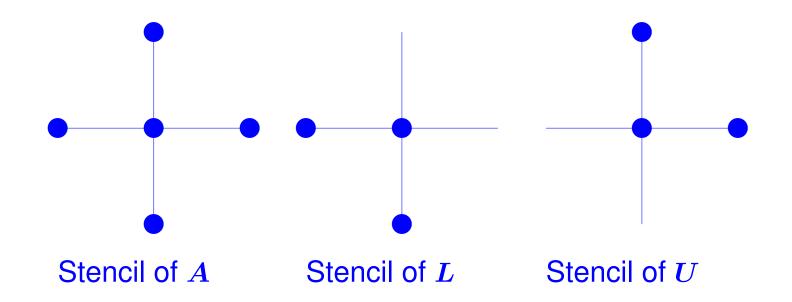
EndFor
```

When A is SPD then the ILU factorization = Incomplete Choleski factorization – IC(0). Meijerink and Van der Vorst [1977].

Chap 9-10 – Precon

Pattern of ILU(0) for 5-point matrix. 'Stencil' viewpoint





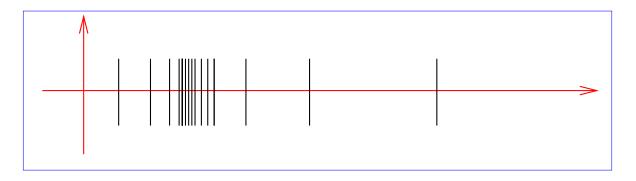
- > Stencil: local connectivity for a graph with a regular pattern.
- Example: For 5-point matrix *A* each node is coupled with its East, West, North, South neighbors (when then exist)

Interpret fill-ins in the ILU(0) and ILU(1) preconditioners using only stencils/

13-19 Chap 9-10 – Precon

Typical eigenvalue distribution

- More than anything else, what determines the convergence of an iterative method is the distribution of the eigenvalues of the matrix.
- \blacktriangleright Need to consider eigenvalues of preconditioned matrix $M^{-1}A$



Clustering around 1 results in fast convergence

If A is SPD with only k distinct eigenvalues, what is the minimal polynomial p of A? Show that $p(0) \neq 0$. How many steps will it take CG to converge for any linear system Ax = b?

Higher order ILU factorization

- ightharpoonup Higher accuracy incomplete Choleski: for regularly structured problems, IC(p) allows p additional diagonals in L.
- ➤ Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]
- ullet Initially $Lev_{ij} = \left\{egin{array}{ll} 0 & ext{for } a_{ij}
 eq 0 \ \infty & ext{for } a_{ij} == 0 \end{array}
 ight.$
- At a given step i of Gaussian elimination:

$$Lev_{ij} = \min\{Lev_{ij}; Lev_{ik} + Lev_{kj} + 1\}$$

ALGORITHM: 6 . ILU(p)

```
For i=2,N Do

For each k=1,\ldots,i-1 and if a_{ij}\neq 0 do

Compute a_{ik}:=a_{ik}/a_{jj}

Compute a_{i,*}:=a_{i,*}-a_{ik}a_{k,*}.

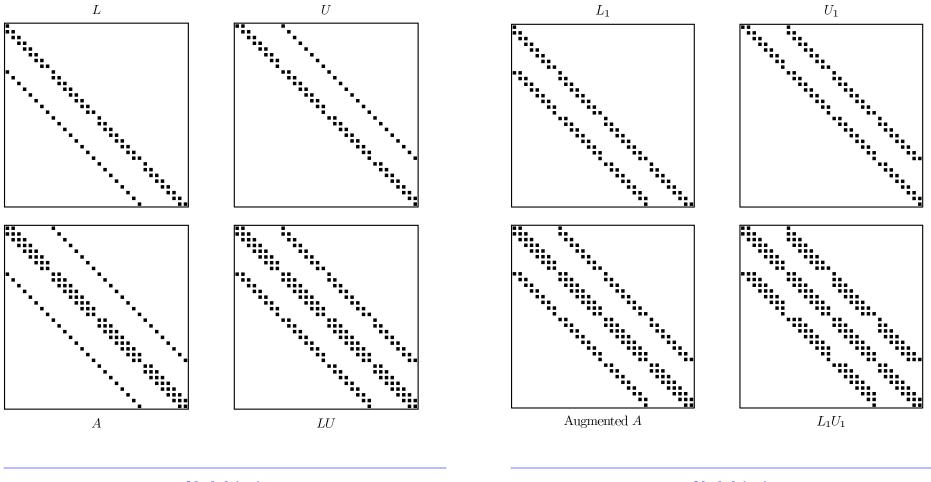
Update the levels of a_{i,*}

In row i: if lev(a_{ij})>p set a_{ij}=0

EndFor
```

- Algorithm can be split into symbolic and a numerical phase.
- ightharpoonup Higher level of fill-in ightharpoonup typically fewer iterations but more expensive set-up cost

Augmented pattern used for ILU(1) = pattern of L U from ILU(0)



ILU(1)

13-23 ______ Chap 9-10 – Precon

ILU with threshold: ILUT (k, ϵ)

ILU(p) factorizations are based on structure only and not numerical values

potential problems for non M-matrices.

Alternative: ILU with Threshold, ILUT

- During each i-th step in GE (i, k, j version), discard pivots or fill-ins whose value is below $\epsilon ||row_i(A)||$.
- Once the i-th row of L+U, (L-part + U-part) is computed retain only the k largest elements in both parts.
- Advantages: controlled fill-in. Smaller memory overhead.
- Easy to implement and can be made quite inexpensive.

Other preconditioners

Many other techniques have been developed:

- Approximate inverse methods
- Polynomial preconditioners
- Multigrid type methods
- Incomplete LU based on Crout factorization
- Multi-elimination and multilevel ILU (ARMS)