Preconditioning	Preconditioning – Basic principles
 Introduction to preconditoning Preconditioned iterations Preconditioned CG and GMRES. 	Basic idea: Use Krylov subspace method on a modified system such as $M^{-1}Ax = M^{-1}b.$
 Basic preconditioners. ILU(0), ILU(p), ILUT preconditioners 	• The matrix $M^{-1}A$ need not be formed explicitly; only need to solve $Mw = v$ whenever needed.
• See Chapters 9, 10 of text for details.	• Consequence: fundamental requirement is that it should be easy to compute $M^{-1}v$ for an arbitrary vector v .
	• We want: M close to A (system easier to solve) but operation $v \to M^{-1}v$ inexpensive (added cost not too high).
	13-2 Chap 9-10 – Precor
Left, Right, and Split preconditioning	13-2 Chap 9-10 – Precor Preconditioned CG (PCG)
<i>Left, Right, and Split preconditioning</i> Left preconditioning	I3-2 Chap 9-10 – Preconditioned CG (PCG) Preconditioned CG (PCG) Assume: A and M are both SPD.
Left preconditioning $M^{-1}Ax = M^{-1}b$	Preconditioned CG (PCG)
Left preconditioning $M^{-1}Ax = M^{-1}b$ Right preconditioning	Preconditioned CG (PCG)> Assume: A and M are both SPD.> Can apply CG directly to systems $M^{-1}Ax = M^{-1}b$ or $AM^{-1}u = b$
Left preconditioning $M^{-1}Ax = M^{-1}b$	Preconditioned CG (PCG)> Assume: A and M are both SPD.> Can apply CG directly to systems $M^{-1}Ax = M^{-1}b$ or $AM^{-1}u = b$ > Problem: loss of symmetry

Preconditioned CG (PCG)

ALGORITHM : 1 Preconditioned CG

- 1. Compute $r_0 := b Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
- 2. For j = 0, 1, ..., until convergence Do:

3.
$$\alpha_j := (r_j, z_j)/(Ap_j, p_j)$$

4.
$$x_{j+1} := x_j + \alpha_j p_j$$

- 5. $r_{j+1} := r_j \alpha_j A p_j$
- 6. $z_{j+1} := M^{-1} r_{j+1}$

7.
$$\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$$

$$8. \qquad p_{j+1} := z_{j+1} + \beta_j p_j$$

9. EndDo

Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

$$(M^{-1}Ax,y)_A = (AM^{-1}Ax,y) = (x,AM^{-1}Ay) = (x,M^{-1}Ay)_A$$

- > Can obtain a similar algorithm
- > Assume that M = Cholesky product $M = LL^T$.

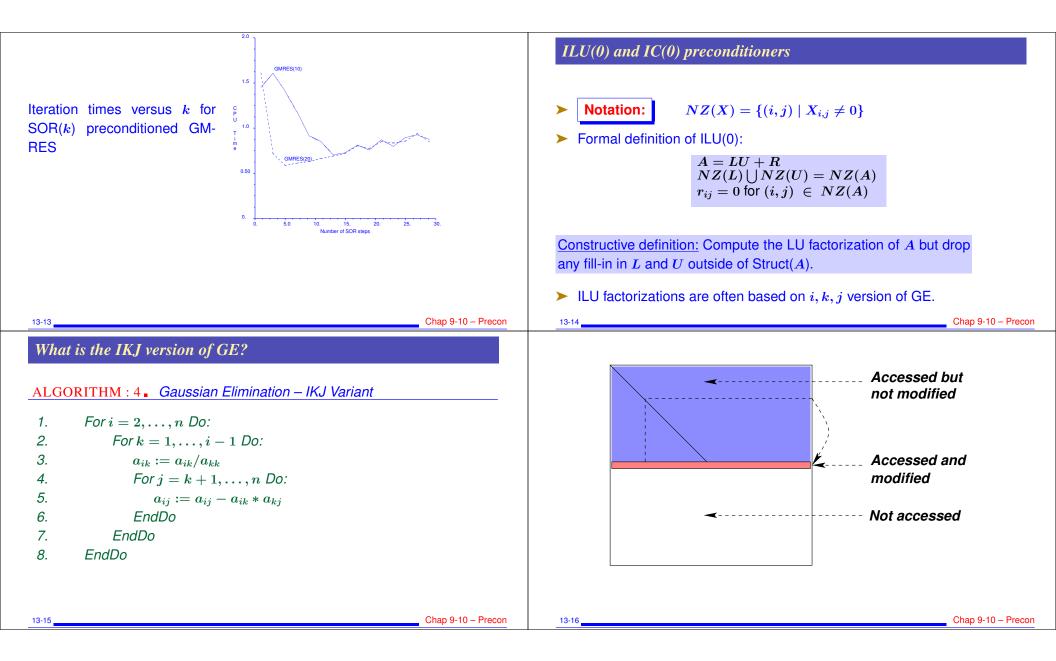
Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u = L^{-1}b$$
, with $x = L^{T}u$

> Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by $\hat{}$.

13-5 Chap 9-10 – Preco	n <u>13-6</u> Chap 9-10 – Precon
ALGORITHM : 2 CG with Split Preconditioner	ALGORITHM : 3 GMRES – (right) Preconditioned
1. Compute $r_0 := b - Ax_0$; $\hat{r}_0 = L^{-1}r_0$; $p_0 := L^{-T}\hat{r}_0$. 2. For $j = 0, 1,,$ until convergence Do: 3. $\alpha_j := (\hat{r}_j, \hat{r}_j)/(Ap_j, p_j)$ 4. $x_{j+1} := x_j + \alpha_j p_j$ 5. $\hat{r}_{j+1} := \hat{r}_j - \alpha_j L^{-1} Ap_j$ 6. $\beta_j := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j)$ 7. $p_{j+1} := L^{-T}\hat{r}_{j+1} + \beta_j p_j$ 8. EndDo > The x_j 's produced by the above algorithm and PCG are identical (if same initial guess is used). $\boxed{\mathbb{M}_1}$ Show this	1. Start: Choose x_0 and a dimension m 2. Arnoldi process: • Compute $r_0 = b - Ax_0$, $\beta = r_0 _2$ and $v_1 = r_0/\beta$. • For $j = 1,, m$ do - Compute $z_j := M^{-1}v_j$ - Compute $w := Az_j$ - for $i = 1,, j$, do : $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$ - $h_{j+1,1} = w _2; v_{j+1} = w/h_{j+1,1}$ • Define $V_m := [v_1,, v_m]$ and $\bar{H}_m = \{h_{i,j}\}$.
13-7 Chap 9-10 – Preco	n <u>13-8</u> Chap 9-10 – Precon

3. Form the approximate solution: $x_m = x_0 + M^{-1}V_m y_m$ where $y_m = \operatorname{argmin}_y \ \beta e_1 - \bar{H}_m y\ _2$ and $e_1 = [1, 0, \dots, 0]^T$.	Standard preconditioners
4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.	 Simplest preconditioner: M = Diag(A) ➤ poor convergence.
 <i>Remark: M</i> is assumed to be the same at each step <i>j</i>. Situations may arise where <i>M</i> varies: <i>M</i> → <i>M_j</i>. We need a 'Flexible' accelerator that allows this. Changes needed: 1) Save each <i>z_j</i> into matrix <i>Z_m</i> = [<i>z</i>₁, · · · , <i>z_m</i>]. 2) Replace <i>M</i>⁻¹<i>V_m</i> by <i>Z_m</i> to form solution in step 3. ✓ What optimality property is satisfied with (1) Left Preconditioned GM-RES, (2) Right Preconditioned GMRES; (3) Flexible GMRES? 	 Next to simplest: SSOR. M = (D - ωE)D⁻¹(D - ωF) Still simple but often more efficient: ILU(0). ILU(p) - ILU with level of fill p - more complex. Class of ILU preconditioners with threshold Class of approximate inverse preconditioners Class of Multilevel ILU preconditioners Algebraic Multigrid Preconditioners
13-9 Chap 9-10 – Precon	13-10 Chap 9-10 – Precon
The SOR/SSOR preconditioner-FD-E $M_{SOR} = (D - \omega E)$ • SSOR preconditioning $M_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$ • $M_{SSOR} = LU, L$ = lower unit matrix, U = upper triangular. One solve with $M_{SSOR} \approx$ same cost as a MAT-VEC.	 <i>k</i>-step SOR (resp. SSOR) preconditioning: <i>k</i> steps of SOR (resp. SSOR) Questions: Best <i>ω</i>? For preconditioning can take <i>ω</i> = 1 <i>M</i> = (<i>D</i> − <i>E</i>)<i>D</i>^{−1}(<i>D</i> − <i>F</i>) Observe: <i>M</i> = <i>LU</i> + <i>R</i> with <i>R</i> = <i>ED</i>^{−1}<i>F</i>. Best <i>k</i>? <i>k</i> = 1 is rarely the best. Substantial difference in performance.
13-11 Chap 9-10 – Precon	



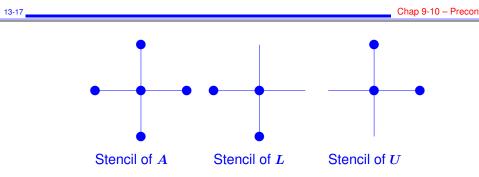
ILU(0) – zero-fill ILU

ALGORITHM : 5 ILU(0)

13-19

For i = 1, ..., N Do: For k = 1, ..., i - 1 and if $(i, k) \in NZ(A)$ Do: Compute $a_{ik} := a_{ik}/a_{kj}$ For j = k + 1, ... and if $(i, j) \in NZ(A)$, Do: compute $a_{ij} := a_{ij} - a_{ik}a_{k,j}$. EndFor EndFor

> When A is SPD then the ILU factorization = Incomplete Choleski factorization – IC(0). Meijerink and Van der Vorst [1977].

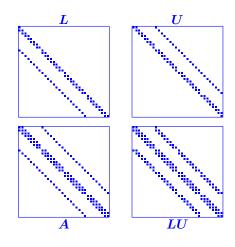


- > Stencil: local connectivity for a graph with a regular pattern.
- Example: For 5-point matrix A each node is coupled with its East, West, North, South neighbors (when then exist)
- $\fbox{\sc star}$ Interpret fill-ins in the ILU(0) and ILU(1) preconditioners using only stencils/

Chap 9-10 – Precon

13-20

Pattern of ILU(0) for 5-point matrix. 'Stencil' viewpoint



Typical eigenvalue distribution

- ➤ More than anything else, what determines the convergence of an iterative method is the distribution of the eigenvalues of the matrix.
- > Need to consider eigenvalues of preconditioned matrix $M^{-1}A$

Clustering around 1 results in fast convergence

If A is SPD with only k distinct eigenvalues, what is the minimal polynomial p of A? Show that $p(0) \neq 0$. How many steps will it take CG to converge for any linear system Ax = b?

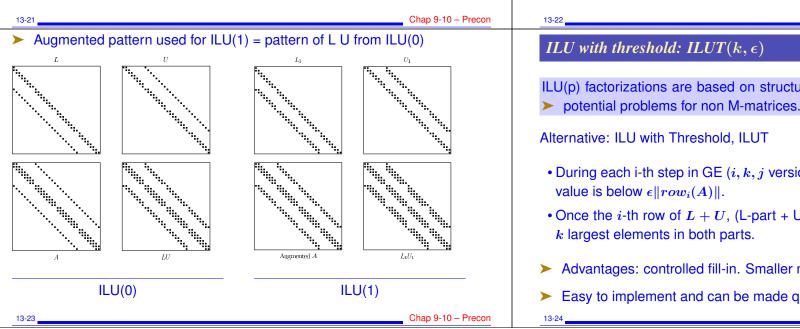
Chap 9-10 - Precon

Higher order ILU factorization

- Higher accuracy incomplete Choleski: for regularly structured problems, IC(p) allows p additional diagonals in L.
- > Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

• Initially $Lev_{ij} = \begin{cases} 0 & \text{for } a_{ij} \neq 0 \\ \infty & \text{for } a_{ij} == 0 \end{cases}$ • At a given step *i* of Gaussian elimination:

 $Lev_{ij} = \min\{Lev_{ij}; Lev_{ik} + Lev_{kj} + 1\}$



ALGORITHM : 6 . ILU(p)

For i = 2, N Do For each $k = 1, \ldots, i - 1$ and if $a_{ij} \neq 0$ do Compute $a_{ik} := a_{ik}/a_{jj}$ Compute $a_{i,*} := a_{i,*} - a_{ik}a_{k,*}$. Update the levels of $a_{i,*}$ In row i: if $lev(a_{ij}) > p$ set $a_{ij} = 0$ EndFor EndFor

Algorithm can be split into symbolic and a numerical phase. ≻

Higher level of fill-in \rightarrow typically fewer iterations - but more expensive set-up cost

Chap 9-10 - Precon

ILU(p) factorizations are based on structure only and not numerical values

- During each i-th step in GE (i, k, j version), discard pivots or fill-ins whose
- Once the *i*-th row of L + U, (L-part + U-part) is computed retain only the
- Advantages: controlled fill-in. Smaller memory overhead.
- Easy to implement and can be made quite inexpensive.

Chap 9-10 - Precon

Other preconditioners

Many other techniques have been developed:

- > Approximate inverse methods
- > Polynomial preconditioners
- > Multigrid type methods

13-25

- ► Incomplete LU based on Crout factorization
- Multi-elimination and multilevel ILU (ARMS)

Chap 9-10 - Precon