Preconditioning

- Introduction to preconditoning
- Preconditioned iterations
- Preconditioned CG and GMRES.
- Basic preconditioners.
- ILU(0), ILU(p), ILUT preconditioners
- See Chapters 9, 10 of text for details.

Preconditioning - Basic principles

Basic idea: Use Krylov subspace method on a modified system such as:

$$
M^{-1} A x=M^{-1} b
$$

- The matrix $M^{-1} A$ need not be formed explicitly; only need to solve $M w=$ v whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $M^{-1} v$ for an arbitrary vector v.
- We want: M close to A (system easier to solve) but operation $v \rightarrow M^{-1} v$ inexpensive (added cost not too high).

13-2

Left, Right, and Split preconditioning

Left preconditioning

$$
M^{-1} A x=M^{-1} b
$$

Right preconditioning

$$
A M^{-1} u=b, \text { with } x=M^{-1} u
$$

Split preconditioning: M is factored as $M=M_{L} M_{R}$.

$$
M_{L}^{-1} A M_{R}^{-1} u=M_{L}^{-1} b, \text { with } x=M_{R}^{-1} u
$$

Preconditioned CG (PCG)
> Assume: A and M are both SPD.
> Can apply CG directly to systems
$M^{-1} A x=M^{-1} b$ or $A M^{-1} u=b$
> Problem: loss of symmetry
> Alternative: when $M=\boldsymbol{L} L^{T}$ use split preconditioner option
$>$ Second alternative: Observe that $M^{-1} A$ is self-adjoint with respect to M inner product:

$$
\left(M^{-1} A x, y\right)_{M}=(A x, y)=(x, A y)=\left(x, M^{-1} A y\right)_{M}
$$

Preconditioned CG (PCG)

ALGORITHM : 1. Preconditioned CG
Compute $r_{0}:=b-A x_{0}, z_{0}=M^{-1} r_{0}$, and $p_{0}:=z_{0}$
For $j=0,1, \ldots$, until convergence Do:
$\alpha_{j}:=\left(r_{j}, z_{j}\right) /\left(A p_{j}, p_{j}\right)$
$x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
$r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
$z_{j+1}:=M^{-1} r_{j+1}$
$\beta_{j}:=\left(r_{j+1}, z_{j+1}\right) /\left(r_{j}, z_{j}\right)$
$p_{j+1}:=z_{j+1}+\beta_{j} p_{j}$
EndDo

Note $M^{-1} A$ is also self-adjoint with respect to $(., .)_{A}$:

$$
\left(M^{-1} A x, y\right)_{A}=\left(A M^{-1} A x, y\right)=\left(x, A M^{-1} A y\right)=\left(x, M^{-1} A y\right)_{A}
$$

> Can obtain a similar algorithm
$>$ Assume that $M=$ Cholesky product $M=\boldsymbol{L} L^{T}$.
Then, another possibility: Split preconditioning option, which applies CG to the system

$$
L^{-1} A L^{-T} u=L^{-1} b, \text { with } x=L^{T} u
$$

Notation: $\hat{A}=L^{-1} A L^{-T}$. All quantities related to the preconditioned system are indicated by ${ }^{\text {. }}$

13-5

13-6

ALGORITHM : 2. CG with Split Preconditioner

```
    Compute \(r_{0}:=b-A x_{0} ; \hat{r}_{0}=L^{-1} r_{0} ; p_{0}:=L^{-T} \hat{r}_{0}\)
    For \(j=0,1, \ldots\), until convergence Do:
            \(\alpha_{j}:=\left(\hat{r}_{j}, \hat{r}_{j}\right) /\left(\boldsymbol{A} p_{j}, p_{j}\right)\)
            \(x_{j+1}:=x_{j}+\alpha_{j} \boldsymbol{p}_{j}\)
            \(\hat{r}_{j+1}:=\hat{r}_{j}-\alpha_{j} L^{-1} A p_{j}\)
            \(\beta_{j}:=\left(\hat{r}_{j+1}, \hat{r}_{j+1}\right) /\left(\hat{r}_{j}, \hat{r}_{j}\right)\)
            \(p_{j+1}:=L^{-T} \hat{r}_{j+1}+\beta_{j} p_{j}\)
    EndDo
```

The x_{j} 's produced by the above algorithm and PCG are identical (if same initial guess is used).Show this

ALGORITHM : 3. GMRES - (right) Preconditioned

1. Start: Choose x_{0} and a dimension m
2. Arnoldi process:

- Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.
- For $j=1, \ldots, m$ do
- Compute $z_{j}:=M^{-1} v_{j}$
- Compute $w:=A z_{j}$
- for $i=1, \ldots, j$, do : $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right\}$
$-h_{j+1,1}=\|w\|_{2} ; \boldsymbol{v}_{j+1}=\boldsymbol{w} / \boldsymbol{h}_{j+1,1}$
- Define $V_{m}:=\left[v_{1}, \ldots ., v_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: $x_{m}=x_{0}+M^{-1} V_{m} y_{m}$ where
$y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2 .

Remark: M is assumed to be the same at each step j. Situations may arise where M varies: $M \rightarrow M_{j}$. We need a 'Flexible' accelerator that allows this. Changes needed:

1) Save each z_{j} into matrix $Z_{m}=\left[z_{1}, \cdots, z_{m}\right]$.
2) Replace $M^{-1} V_{m}$ by Z_{m} to form solution in step 3 .
(2) What optimality property is satisfied with (1) Left Preconditioned GMRES, (2) Right Preconditioned GMRES; (3) Flexible GMRES?

Standard preconditioners

- Simplest preconditioner: $\mathrm{M}=\operatorname{Diag}(\mathrm{A})>$ poor convergence.
- Next to simplest: SSOR. $M=(D-\omega E) D^{-1}(D-\omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) - ILU with level of fill p-more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners
- Algebraic Multigrid Preconditioners
\qquad
$>k$-step SOR (resp. SSOR) preconditioning:

```
k steps of SOR (resp. SSOR)
```

$>$ Questions: Best ω ? For preconditioning can take $\omega=1$

$$
M=(D-E) D^{-1}(D-F)
$$

Observe: $M=L U+R$ with $R=E D^{-1} F$.
$>$ Best k ? $k=1$ is rarely the best. Substantial difference in performance.
$>M_{S S O R}=L U, L=$ lower unit matrix, $U=$ upper triangular. One solve with $M_{S S O R} \approx$ same cost as a MAT-VEC.


```
ILU(0) - zero-fill ILU
ALGORITHM : 5. ILU(0)
    Fori=1,\ldots,N Do:
        For }k=1,\ldots,i-1 and if (i,k)\inNZ(A)Do
            Compute a}\mp@subsup{a}{ik}{}:=\mp@subsup{a}{ik}{}/\mp@subsup{a}{kj}{
            For j=k+1,\ldots and if (i,j) \inNZ(A), Do:
            compute }\mp@subsup{a}{ij}{}:=\mp@subsup{a}{ij}{}-\mp@subsup{a}{ik}{}\mp@subsup{a}{k,j}{}
        EndFor
    EndFor
```

$>$ When \boldsymbol{A} is SPD then the ILU factorization = Incomplete Choleski factorization - IC(0). Meijerink and Van der Vorst [1977].

Stencil of A
Stencil of L
Stencil of U
> Stencil: local connectivity for a graph with a regular pattern.
$>$ Example: For 5-point matrix \boldsymbol{A} each node is coupled with its East, West, North, South neighbors (when then exist)Interpret fill-ins in the $\operatorname{ILU}(0)$ and $\operatorname{ILU}(1)$ preconditioners using only stencils/

Typical eigenvalue distribution
> More than anything else, what determines the convergence of an iterative method is the distribution of the eigenvalues of the matrix.
$>$ Need to consider eigenvalues of preconditioned matrix $M^{-1} \boldsymbol{A}$
Clustering around 1 results in fast convergenceIf \boldsymbol{A} is SPD with only k distinct eigenvalues, what is the minimal polynomial p of A ? Show that $p(0) \neq 0$. How many steps will it take CG to converge for any linear system $A x=b$?

Higher order ILU factorization

> Higher accuracy incomplete Choleski: for regularly structured problems, IC(p) allows p additional diagonals in L.
> Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

$$
\begin{aligned}
& \text { - Initially } \operatorname{Lev}_{i j}= \begin{cases}0 & \text { for } a_{i j} \neq 0 \\
\infty & \text { for } a_{i j}==0\end{cases} \\
& \text { - At a given step } i \text { of Gaussian elimination: } \\
& \qquad \operatorname{Lev}_{i j}=\min \left\{\text { Lev }_{i j} ; \text { Lev }_{i k}+\text { Lev }_{k j}+1\right\}
\end{aligned}
$$

ALGORITHM: 6. ILU(p)

For $i=2, N$ Do

$$
\text { For each } k=1, \ldots, i-1 \text { and if } a_{i j} \neq 0 \text { do }
$$

Compute $a_{i k}:=a_{i k} / a_{j j}$
Compute $a_{i, *}:=a_{i, *}-a_{i k} a_{k, *}$.
Update the levels of $a_{i, *}$
In row i : if lev $\left(a_{i j}\right)>p$ set $a_{i j}=0$

EndFor

EndFor

> Algorithm can be split into symbolic and a numerical phase.
$>$ Higher level of fill-in \rightarrow typically fewer iterations - but more expensive set-up cost
13-22

ILU with threshold: $\operatorname{ILUT}(k, \epsilon)$

ILU(p) factorizations are based on structure only and not numerical values
$>$ potential problems for non M-matrices.
Alternative: ILU with Threshold, ILUT

- During each i-th step in GE (i, k, j version), discard pivots or fill-ins whose value is below $\epsilon\left\|\operatorname{row}_{i}(A)\right\|$.
- Once the i-th row of $L+\boldsymbol{U}$, (L-part + U-part) is computed retain only the k largest elements in both parts.
> Advantages: controlled fill-in. Smaller memory overhead.
$>$ Easy to implement and can be made quite inexpensive.

Other preconditioners

Many other techniques have been developed:
> Approximate inverse methods
> Polynomial preconditioners
> Multigrid - type methods
> Incomplete LU based on Crout factorization
> Multi-elimination and multilevel ILU (ARMS)
${ }^{13-25}$

