APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING,

EMBEDDING

- The clustering problem; Basic method: K-means
- Similarity graphs; kNN graphs
- Measures of separation: edge cuts, normalized cuts, etc
- Application: Segmentation
- Graph embeddings; Laplacean Eigenmaps
- Locally Linear Embeddings (LLE)
- Explicit mappings; PCA, LPP, ONPP,..
- Building a knn graph

What is 'Unsupervised Learning'?

Ans: Class of methods that do not exploit labeled data

- Example of digits: perform a 2-D projection
- Images of same digit tend to cluster (more or less)
- Such 2-D representations are popular for visualization
- Can also try to find natural clusters in data, e.g., in materials
- Basic clusterning technique: K-means

18-3

Clustering

> Problem: we are given n data items: x_1, x_2, \dots, x_n . Would like to '*cluster*' them, i.e., group them so that each group or cluster contains items that are similar in some sense.

Each group is a 'cluster' or a 'class'

- Clustering

Example: Community Detection

Communities modeled by an 'affinity' graph [e.g., 'user A sends frequent e-mails to user B']. [data: www-personal.umich.edu/~mejn/netdata/]

18-2

18-4

 $\leftarrow \text{Original Adj. matrix}$ **Goal:** Find ordering so blocks are as dense as possible \rightarrow

- Use 'blocking' techniques for sparse matrices
- Advantage of this viewpoint: need not know # of clusters.

A basic method: K-means

Example: For text data: Can decide that any columns i and j with a cosine greater than 0.95 are 'similar' and assign that cosine value to w_{ij}

Example of application Data set from :

> Two methods: K-nearest Neighbor graphs or use Gaussian ('heat') kernel

Clustering

18-8

18-7

K-nearest neighbor graphs	Nearest neighbor graphs
 > Given: a set of <i>n</i> data points X = {x₁,,x_n} → vertices > Given: a proximity measure between two data points x_i and x_j - as measured by a quantity dist(x_i, x_j) > Want: For each point x_i a list of the 'nearest neighbors' of x_i (edges between x_i and these nodes). > Note: graph will usually be directed → need to symmetrize 	 Data For each node, get a few of the nearest neighbors → Graph Problem: How to build a nearest-neighbor graph from given data We will revisit this later.
 <u>e-graph</u>: Edges consist of pairs (x_i, x_j) such that ρ(x_i, x_j) ≤ ε <u>kNN graph</u>: Nodes adjacent to x_i are those nodes x_ℓ with the k with smallest distances ρ(x_i, x_ℓ). e-graph is undirected and is geometrically motivated. Issues: 1) may result in disconnected components 2) what ε? kNN graphs are directed in general (can be trivially fixed). kNN graphs especially useful in practice. 	18-10 - ClusteringSimilarity graphs: Using 'heat-kernels'Define weight between <i>i</i> and <i>j</i> as: $w_{ij} = f_{ij} \times \begin{cases} e^{\frac{- x_i - x_j ^2}{\sigma_X^2}} & \text{if } x_i - x_j < r \\ 0 & \text{if not} \end{cases}$ Note $ x_i - x_j $ could be any measure of distance f_{ij} = optional = some measure of similarity - other than distanceOnly nearby points kept.Sparsity depends on parameters
18-11 Clustering	18-12 – Clustering

Therefore, by the Courant-Fischer theorem:

$$\lambda_2 \leq rac{(Lx,x)}{(x,x)} = n imes rac{w(A,B)}{|A|.|B|} = n imes c.$$

Hence result.

18-17

18-19

> Therefore:

ldea is to use eigenvector associated with λ_2 to determine partition, e.g., based on sign of entries. Use the ratio-cut measure to actually determine where to split.

Normalized cuts [Shi-Malik,2000]

▶ Recall notation $w(X, Y) = \sum_{x \in X, y \in Y} w(x, y)$ - then define: $\operatorname{ncut}(A, B) = \frac{\operatorname{cut}(A, B)}{w(A, V)} + \frac{\operatorname{cut}(A, B)}{w(B, V)}$ ▶ Goal is to avoid small sets A, B What is w(A, V) in the case when $w_{ii} == 1$? Let x be an indicator ≻ $x_i = egin{cases} 1 & if \ i \in A \ 0 & if \ i \in B \end{cases}$ vector: > Recall that: $x^T L x = \sum_{(i,j) \in E} w_{ij} |x_i - x_j|^2$ (note: each edge counted once) - Clustering 18-18 $k = rac{\sum_{x_i > 0} d_i}{\sum d_i}; \quad b = rac{k}{1-k}; \quad ext{and:} \quad y = (1+x) - b(1-x)$ ► Let $y^T L y$ Then it can be shown that > \min $\overline{u^T D u}$ $y_i \{1, -b\}$ we need to solve: Subject to $y^T D \ 1 = 0$ \blacktriangleright + Relax \rightarrow need to solve Generalized eigenvalue problem $Ly = \lambda Dy$ $y_1 = 1$ is eigenvector associated with eigenvalue $\lambda_1 = 0$ \succ y_2 associated with second eigenvalue solves problem. ≻

Goal now: to minimize ncut

$$\min_{A,B} \mathsf{ncut}(A,B) = \min_{x_i \in \{0,1\}} rac{x^T L x}{x^T D x} + rac{x^T L x}{(\ \mathbb{1} - x)^T D x}$$

 $w(B,V) = \sum_{x_i=0}^{+} d_j = (\ \mathbb{1} - x)^T W \ \mathbb{1} = (\ \mathbb{1} - x)^T D \ \mathbb{1}$

 $cut(A,B) = \sum_{x_i=1,x_j=0} w_{ij} = x^T L x$ $w(A,V) = \sum_{x_i=1} d_i = x^T W$ $\mathbb{1} = x^T D$ $\mathbb{1}$

18-20

- Clustering

A few properties

▲₂ Show that

$$ncut(A,B) = \sigma imes rac{cut(A,B)}{w(A,V) imes w(B,V)}$$

where σ is a constant

How do ratio-cuts and normalized cuts compare when the graph is *d*-regular (same degree for each node).

Extension to more than 2 clusters

- Just like graph partitioning we can:
- 1. Apply the method recursively [Repeat clustering on the resulted parts]

2. or compute a few eigenvectors and run K-means clustering on these eigenvectors to get the clustering.

Divide and conquer KNN: key ingredient

- ► Key ingredient is *Spectral bisection*
- ▶ Let the data matrix $X = [x_1, \dots, x_n] \in \mathbb{R}^{d \times n}$
- Each column == a data point.
- ► Center the data: $\hat{X} = [\hat{x}_1, \dots, \hat{x}_n] = X ce^T$ where c == centroid; e = ones(d, 1) (matlab)

Goal: Split \hat{X} into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, '98.

Idea: Use the (σ, u, v) = largest singular triplet of \hat{X} with: u^T

 $u^T \hat{X} = \sigma v^T.$

– knn

18-30

> Hyperplane is defined as $\langle u, x \rangle = 0$, i.e., it splits the set of data points into two subsets:

$$X_+ = \{x_i \mid u^T \hat{x}_i \geq 0\}$$
 and $X_- = \{x_i \mid u^T \hat{x}_i < 0\}.$

$$\blacktriangleright$$
 Note that $u^T \hat{x}_i = u^T \hat{X} e_i = \sigma v^T e_i
ightarrow$

18-29

 $X_+ = \{x_i \mid v_i \geq 0\}$ and $X_- = \{x_i \mid v_i < 0\},$

where v_i is the *i*-th entry of v.

► In practice: replace above criterion by

 $X_+ = \{x_i \mid v_i \geq {\sf med}(v)\} \ \& \ X_- = \{x_i \mid v_i < {\sf med}(v)\}$

where med(v) == median of the entries of v.

For largest singular triplet (σ, u, v) of \hat{X} : use Golub-Kahan-Lanczos algorithm or Lanczos applied to $\hat{X}\hat{X}^T$ or $\hat{X}^T\hat{X}$

Cost (assuming s Lanczos steps) : $O(n \times d \times s)$; Usually: d very small

Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets X_1, X_2

– knn

Glue method: divide current set into two disjoint subsets X_1, X_2 plus a third set X_3 called gluing set.

18-31

The Overlap Method

> Divide current set *X* into two overlapping subsets:

$$X_1 = \{x_i \mid v_i \ge -h_{lpha}(S_v)\}$$
 and $X_2 = \{x_i \mid v_i < h_{lpha}(S_v)\},$

• where $S_v = \{ |v_i| \mid i = 1, 2, \dots, n \}.$

- and $h_{\alpha}(\cdot)$ is a function that returns an element larger than $(100\alpha)\%$ of those in S_v .
- > Rationale: to ensure that the two subsets overlap $(100\alpha)\%$ of the data, i.e.,

$$|X_1 \cap X_2| = \lceil \alpha |X| \rceil.$$

The Glue Method

Divide the set X into two disjoint subsets X_1 and X_2 with a gluing subset X_3 :

$$X_1\cup X_2=X, \hspace{1em} X_1\cap X_2=\emptyset, \hspace{1em} X_1\cap X_3
eq \emptyset, \hspace{1em} X_2\cap X_3
eq \emptyset.$$

Criterion used for splitting:

$$egin{aligned} X_1 = \{x_i \mid v_i \geq 0\}, & X_2 = \{x_i \mid v_i < 0\}, \ X_3 = \{x_i \mid -h_lpha(S_v) \leq v_i < h_lpha(S_v)\}. \end{aligned}$$

Note: gluing subset X_3 here is just the intersection of the sets X_1, X_2 of the overlap method.

18-33	– knn	18-34	– knn
Theorem The time complexity for the overlap method is			
$T_{ extsf{o}}(n) = \Theta(dn^{t_0}), \qquad extsf{where:} \qquad t_{ extsf{o}} = \log_{2/(1+lpha)} 2 = rac{1}{1 - \log_2(1+lpha)}.$			
Theorem The time complexity for the glue method is			
$T_{ m g}(n)=\Theta(dn^{t_{ m g}}/lpha), \hspace{0.2cm}$ where $\hspace{0.2cm} t_{ m g}\equiv$ sol. to the equ.: $\hspace{0.2cm} rac{2}{2^t}+lpha^t=1.$		GRAPH EMBEDDINGS	
Example: When $\alpha = 0.1$, then $t_0 = 1.16$ while $t_g = 1.12$.			
Reference:			
Jie Chen, Haw-Ren Fang and YS, "Fast Approximate &NN Graph Constitution for High Dimensional Data via Recursive Lanczos Bisection" JMLR, 10, pp. 1989-2012 (2009).	ruc- vol.		
18-35	– knn		

Graph embeddings

- We have seen how to build a graph to represent data
- Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)

ightarrow Data: $Y = [y_1, y_2, \cdots, y_n]$ in \mathbb{R}^d

- > Trivial use: visualize a graph (d = 2)
- > Wish: mapping should preserve *similarities* in graph.

18-37

- Eigenmaps uses the graph Laplacean
- > Recall: Graph Laplacean is a matrix defined by :

L = D - W

$$egin{cases} w_{ij} \geq 0 ext{ if } j \in Adj(i) \ w_{ij} = 0 ext{ else} \ \end{bmatrix} D = ext{diag} \left[d_{ii} = \sum_{j
eq i} w_{ij}
ight]$$

with Adj(i) = neighborhood of *i* (excludes *i*)

> Remember that vertex *i* represents data item x_i . We will use *i* or x_i to refer to the vertex.

> We will find the y_i 's by solving an optimization problem.

graphEmbed

18-40

- graphEmbed

Vertex embedding: map every vertex x_i to a vector $y_i \in \mathbb{R}^d$

► Many applications [clustering, finding missing link, semi-supervised learning, community detection, ...]

► Graph captures similarities, closeness, ..., in data *Objective:* Build a mapping of each vertex *i* to a data point $y_i \in \mathbb{R}^d$

- Many methods do this
- ► Eigenmaps and LLE are two of the best known

18-38	- graphEmbed

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$\mathcal{F}(Y) = \sum_{i,j=1}^n w_{ij} \|y_i - y_j\|^2$$
 subject to $YDY^ op = I$

Motivation: if $||x_i - x_j||$ is small (orig. data), we want $||y_i - y_j||$ to be also small (low-Dim. data) Original data used indirectly through its graph Objective function can be translated to a trace (see Property 3 in Lecture notes 9) and will yield a sparse eigenvalue problem

- graphEmbed

18-39

Problem translates to: Locally Linear Embedding (Roweis-Saul-00) $\min_{\substack{Y \in \mathbb{R}^{d imes n} \\ YD Y^{ op} = I}} \mathsf{Tr} \left[Y(D - W) Y^{ op}
ight] \,.$ LLE is very similar to Eigenmaps. Main differences: 1) Graph Laplacean matrix is replaced by an 'affinity' graph Solution (sort eigenvalues increasingly): 2) Objective function is changed: want to preserve graph $(D-W)u_i=\lambda_i Du_i\,;\quad y_i=u_i^ op;\quad i=1,\cdots,d$ **1. Graph:** Each x_i is written as a convex An $n \times n$ sparse eigenvalue problem [In 'sample' space] \succ combination of its k nearest neighbors: $x_i pprox \Sigma w_{ij} x_j, \quad \sum_{j \in N_i} w_{ij} = 1$ > Note: can assume D = I. Amounts to rescaling data. Problem becomes > Optimal weights computed ('local calcula- $(I-W)u_i=\lambda_i u_i\,;\quad y_i=u_i^ op;\quad i=1,\cdots,d$ tion') by minimizing $\|x_i - \Sigma w_{ij} x_j\|$ for $i = 1, \cdots, n$ - graphEmbed - graphEmbed 18-41 2. Mapping: Implicit vs explicit mappings The y_i 's should obey the same 'affinity' as x_i 's \rightsquigarrow > In Eigenmaps and LLE we only determine a set of y_i 's in \mathbb{R}^d from the data points $\{x_i\}$. Minimize: $\sum_{i} \left\| y_i - \sum_{j} w_{ij} y_j \right\|^2 \quad \text{subject to:} \quad Y \ \mathbb{1} = 0, \quad YY^\top = I$ $y_i = \phi(x_i), i = 1, \cdots, n$ is implicit The mapping Difficult to compute a y for an x that is not one of the x_i 's > Inconvenient for classification. Thus is known as the "The out-of-sample ≻ Solution: extension" problem $(I-W^ op)(I-W)u_i=\lambda_i u_i; \qquad y_i=u_i^ op.$ > In Explicit (also known as linear) methods: mapping ϕ is known explicitly $(I - W^{\top})(I - W)$ replaces the graph Laplacean of eigenmaps (and it is linear.) – graphEmbed - graphEmbed 18-43 18-44

Locally Preserving Projections (He-Niyogi-03)

LPP is a linear dimensionality reduction technique

• Recall the setting:
Want
$$V \in \mathbb{R}^{m \times d}$$
; $Y = V^{\top}X$

Starts with the same neighborhood graph as Eigenmaps: $L \equiv D - W =$ graph 'Laplacean'; with $D \equiv diag(\{\Sigma_i w_{ij}\})$.

> Optimization problem is to solve

Y

$$\min_{\in \mathbb{R}^{d imes n}, \; YDY^ op = I} \; \; \; \Sigma_{i,j} w_{ij} \left\| y_i - y_j
ight\|^2, \; \; Y = V^ op X.$$

- Difference with eigenmaps: Y is an explicit projection of X
- Solution (sort eigenvalues increasingly)

$$XLX^ op v_i = \lambda_i XDX^ op v_i \quad y_{i,:} = v_i^ op X$$

Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

Example: Graph factorization

- ► Line of work in Papers [1] and [3] above + others
- > Instead of minimizing $\sum w_{ij} \|y_i y_j\|_2^2$ as before

... try to minimize

18-49

 $\sum_{ij} |w_{ij} - y_i^T y_j|^2$ ► In other words solve: $\min_Y \|W - Y^T Y\|_F^2$ ► Referred to as Graph factorization

Common in knowledge graphs

- graphEmbed