APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING,

EMBEDDING

- The clustering problem; Basic method: K-means
- Similarity graphs; kNN graphs
- Measures of separation: edge cuts, normalized cuts, etc
- Application: Segmentation
- Graph embeddings; Laplacean Eigenmaps
- Locally Linear Embeddings (LLE)
- Explicit mappings; PCA, LPP, ONPP,..
- Building a knn graph

What is 'Unsupervised Learning'?

Ans: Class of methods that do not exploit labeled data
$>$ Example of digits: perform a 2-D projection
> Images of same digit tend to cluster (more or less)
$>$ Such 2-D representations are popular for visualization
$>$ Can also try to find natural clusters in data, e.g., in materials
> Basic clusterning technique: K-means

Clustering

Problem: we are given n data items: $x_{1}, x_{2}, \cdots, x_{n}$. Would like to 'cluster' them, i.e., group them so that each group or cluster contains items that are similar in some sense.

$>$ Each group is a 'cluster' or a 'class' 18-2

Example: Community Detection

$>$ Communities modeled by an 'affinity' graph [e.g., 'user \boldsymbol{A} sends frequent e-mails to user B^{\prime}] . [data: www-personal.umich.edu/ $\left.\sim m e j n / n e t d a t a /\right]$

\leftarrow Original Adj. matrix Goal: Find ordering so blocks are as dense as possible \rightarrow

> Use 'blocking' techniques for sparse matrices
> Advantage of this viewpoint: need not know \# of clusters.

[^0]
Example of application Data set from :

http://www-personal.umich.edu/~mejn/netdata/

> Network connecting bloggers of different political orientations [2004 US presidentual election]
> 'Communities': liberal vs. conservative
> Graph: 1,490 vertices (blogs) : first 758: liberal, rest: conservative.
$>$ Edge: $i \rightarrow j$: a citation between blogs i and j
> Blocking algorithm (Density theshold=0.4): subgraphs [note: density = $|E| /|\boldsymbol{V}|^{2}$.]
> Smaller subgraph: conservative blogs, larger one: liberals

Methods based on similarity graphs

> Class of Methods that perform clustering by exploiting a graph that describes the similarities between any two items in the data.
$>$ Need to:

1. decide what nodes are in the neighborhood of a given node 2. quantify their similarities - by assigning a weight to any pair of nodes.

Example: For text data: Can decide that any columns i and j with a cosine greater than 0.95 are 'similar' and assign that cosine value to $w_{i j}$

A basic method: K-means

- A basic algorithm that uses Euclidean distance

```
1 Select p initial centers: }\mp@subsup{c}{1}{},\mp@subsup{c}{2}{},\ldots,\mp@subsup{c}{p}{}\mathrm{ for classes 1,2, .., p
```

2 For each x_{i} do: determine class of x_{i} as $\operatorname{argmin}_{k}\left\|x_{i}-c_{k}\right\|$
3 Redefine each c_{k} to be the centroid of class k
4 Repeat until convergence

First task: build a 'similarity' graph
> Goal: to build a similarity graph, i.e., a graph that captures similarity between any two items

Two methods: K-nearest Neighbor graphs or use Gaussian ('heat') kernel

K-nearest neighbor graphs

$>$ Given: a set of n data points $X=\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow$ vertices
$>$ Given: a proximity measure between two data points x_{i} and x_{j} - as measured by a quantity $\operatorname{dist}\left(x_{i}, x_{j}\right)$
$>$ Want: For each point x_{i} a list of the 'nearest neighbors' of x_{i} (edges between x_{i} and these nodes).
$>$ Note: graph will usually be directed \rightarrow need to symmetrize

Nearest neighbor graphs

Data
> For each node, get a few of the nearest neighbors \rightarrow Graph

> Problem: How to build a nearest-neighbor graph from given data
> We will revisit this later.
${ }^{18-10}$
Two types of nearest neighbor graph often used:
ϵ-graph: \quad Edges consist of pairs $\left(x_{i}, x_{j}\right)$ such that $\rho\left(x_{i}, x_{j}\right) \leq \epsilon$
$k N N$ graph: \quad Nodes adjacent to x_{i} are those nodes x_{ℓ} with the k with smallest distances $\rho\left(x_{i}, x_{\ell}\right)$.
$>\epsilon$-graph is undirected and is geometrically motivated. Issues: 1) may result in disconnected components 2) what ϵ ?
$>k \mathrm{NN}$ graphs are directed in general (can be trivially fixed).
$>k \mathrm{NN}$ graphs especially useful in practice.

Similarity graphs: Using 'heat-kernels'

Define weight between i and j as:

$$
w_{i j}=f_{i j} \times \begin{cases}e^{\frac{-\left\|x_{i}-x_{i}\right\|^{2}}{\sigma_{X}^{2}}} & \text { f }\left\|x_{i}-x_{j}\right\|<r \\ 0 & \text { if not }\end{cases}
$$

$>$ Note $\left\|x_{i}-x_{j}\right\|$ could be any measure of distance...
$>f_{i j}=$ optional $=$ some measure of similarity - other than distance
> Only nearby points kept.
> Sparsity depends on parameters

Edge cuts, ratio cuts, normalized cuts, ...

> Assume now that we have built a 'similarity graph'
$>$ Setting is identical with that of graph partitioning.
$>$ Need a Graph Laplacean: $L=D-W$ with $w_{i i}=0, w_{i j} \geq 0$ and $D=\operatorname{diag}(W * \operatorname{ones}(n, 1))$ [in matlab notation]
$>$ Partition vertex set V in two sets A and B with

$$
A \cup B=V, \quad A \cap B=\emptyset
$$

> Define

$$
\operatorname{cut}(A, B)=\sum_{u \in A, v \in B} w(u, v)
$$

18-13

Ratio-cuts

$>$ Standard Graph Partitioning approach: Find A, B by solving

$$
\text { Minimize } \quad \operatorname{cut}(A, B), \text { subject to }|A|=|B|
$$

$>$ Condition $|\boldsymbol{A}|=|B|$ not too meaningful in some applications - too restrictive in others.
$>$ Minimum Ratio Cut approach. Find A, B by solving:

Minimize	$\frac{\operatorname{cut}(A, B)}{\|A\| \cdot\|B\|}$

$>$ Difficult to find solution (original paper [Wei-Cheng '91] proposes several heuristics)
$>$ Approximate solution: spectral .
$>$ First (naive) approach: use this measure to partition graph, i.e.,
... Find A and B that minimize $\operatorname{cut}(A, B)$.
> Issue: Small sets, isolated nodes, big imbalances,

Better cut

18-14

- Clustering

Theorem [Hagen-Kahng, 91] If λ_{2} is the 2nd smallest eigenvalue of L, then a lower bound for the cost c of the optimal ratio cut partition, is:

$$
c \geq \frac{\lambda_{2}}{n} .
$$

Proof: Consider an optimal partition A, B and let $p=|A| / n, q=|B| / n$. Note that $p+q=1$. Let x be the vector with coordinates

$$
x_{i}= \begin{cases}q & \text { if } i \in A \\ -p & \text { if } i \in B\end{cases}
$$

Note that $x \perp$ 亿. Also if $(i, j)==$ an edge-cut then $\left|x_{i}-x_{j}\right|=|q-(-p)|=$ $|q+p|=1$, otherwise $x_{i}-x_{j}=0$. Therefore:
$x^{T} L x=\sum_{(i, j) \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2}=w(A, B)$.
In addition: $\|x\|^{2}=p q^{2} n+q p^{2} n=p q(p+q) n=p q n=\frac{|A||B|}{n}$.

Therefore, by the Courant-Fischer theorem:

$$
\lambda_{2} \leq \frac{(L x, x)}{(x, x)}=n \times \frac{w(A, B)}{|A| \cdot|B|}=n \times c .
$$

Hence result.

$>$ Idea is to use eigenvector associated with λ_{2} to determine partition, e.g., based on sign of entries. Use the ratio-cut measure to actually determine where to split.

18-17

Therefore:

$$
\begin{aligned}
c u t(A, B) & =\sum_{x_{i}=1, x_{j}=0} w_{i j}=x^{T} L x \\
w(A, V) & =\sum_{x_{i}=1} d_{i}=x^{T} W \mathfrak{q}=x^{T} D \mathfrak{q} \\
w(B, V) & =\sum_{x_{j}=0} d_{j}=(\mathfrak{q}-x)^{T} W \mathfrak{q}=(\rrbracket-x)^{T} D\{
\end{aligned}
$$

> Goal now: to minimize ncut

$$
\min _{A, B} \operatorname{ncut}(A, B)=\min _{x_{i} \in\{0,1\}} \frac{x^{T} L x}{x^{T} D x}+\frac{x^{T} L x}{(1-x)^{T} D x}
$$

A few properties

Show that

$$
\operatorname{ncut}(A, B)=\sigma \times \frac{\operatorname{cut}(A, B)}{w(A, V) \times w(B, V)}
$$

where σ is a constantHow do ratio-cuts and normalized cuts compare when the graph is d regular (same degree for each node).

8-21
 - Clustering 18-22

2
Spectral clustering: General approach
> First task: obtain a graph from pixels.
> Common idea: use "Heat kernels"
$>$ Let $\boldsymbol{F}_{j}=$ feature value (e.g., brightness), and Let $\boldsymbol{X}_{j}=$ spatial position.
Then define

$$
\boldsymbol{w}_{i j}=e^{\frac{-\left\|F_{i}-F_{j}\right\|^{2}}{\sigma_{I}^{2}}} \times \begin{cases}e^{\frac{-\left\|X_{i}-X_{j}\right\|^{2}}{\sigma_{X}^{2}}} & \text { if }\left\|\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right\|<r \\ 0 & \text { else }\end{cases}
$$

Sparsity depends on parametersRun test_mir and test_jump
Application: Image segmentation

18-23
8-23 - Clustering

Extension to more than 2 clusters

> Just like graph partitioning we can:

1. Apply the method recursively [Repeat clustering on the resulted parts]
2. or compute a few eigenvectors and run K-means clustering on these eigenvectors to get the clustering.

2 Build a similarity graph between items
1 Given: Collection of data samples $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$

3 Compute (smallest) eigenvector (s) of resulting graph LaplaceanUse k-means on eigenvector (s) of Laplacean
> For Normalized cuts solve generalized eigen problem.

Building a nearest neighbor graph
$>$ Question: How to build a nearest-neighbor graph from given data?

Will demonstrate the power of a divide a conquer approach combined with the Lanczos algorithm.

Recall: Two common types of nearest neighbor graphs

ϵ-graph: \quad Edges consist of pairs $\left(x_{i}, x_{j}\right)$ such that $\rho\left(x_{i}, x_{j}\right) \leq \epsilon$
$k N N$ graph: \quad Nodes adjacent to x_{i} are those nodes x_{ℓ} with the k with smallest distances $\rho\left(x_{i}, x_{\ell}\right)$.
$>\epsilon$-graph is undirected and is geometrically motivated. Issues: 1) may result in disconnected components 2) what ϵ ?
$>k \mathrm{NN}$ graphs are directed in general (can be trivially fixed).
> $k \mathrm{NN}$ graphs especially useful in practice.

Divide and conquer KNN: key ingredient

- Key ingredient is Spectral bisection
$>$ Let the data matrix $X=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{d \times n}$
> Each column == a data point.
$>$ Center the data: $\hat{X}=\left[\hat{x}_{1}, \ldots, \hat{x}_{n}\right]=X-c e^{T}$
where $c==$ centroid; $e=\operatorname{ones}(d, 1)$ (matlab)
Goal: Split \hat{X} into halves using a hyperplane.
Method: Principal Direction Divisive Partitioning D. Boley, '98.
Idea: Use the $(\sigma, u, v)=$ largest singular triplet of \hat{X} with: $\quad u^{T} \hat{X}=\sigma v^{T}$.

$$
\frac{18-29}{\underline{1} \text { _ -knn }}
$$

$$
X_{+}=\left\{x_{i} \mid v_{i} \geq 0\right\} \quad \text { and } \quad X_{-}=\left\{x_{i} \mid v_{i}<0\right\},
$$

where v_{i} is the i-th entry of v.
$>$ In practice: replace above criterion by

$$
X_{+}=\left\{x_{i} \mid v_{i} \geq \operatorname{med}(v)\right\} \& X_{-}=\left\{x_{i} \mid v_{i}<\operatorname{med}(v)\right\}
$$

where $\operatorname{med}(v)==$ median of the entries of v.
$>$ For largest singular triplet (σ, u, v) of \hat{X} : use Golub-Kahan-Lanczos algorithm or Lanczos applied to $\hat{\boldsymbol{X}} \hat{\boldsymbol{X}}^{T}$ or $\hat{\boldsymbol{X}}^{T} \hat{\boldsymbol{X}}$
$>$ Cost (assuming s Lanczos steps) : $\boldsymbol{O}(n \times d \times s)$; Usually: d very small
$>$ Hyperplane is defined as $\langle u, x\rangle=0$, i.e., it splits the set of data points into two subsets:

$$
X_{+}=\left\{x_{i} \mid u^{T} \hat{\boldsymbol{x}}_{i} \geq 0\right\} \quad \text { and } \quad \boldsymbol{X}_{-}=\left\{x_{i} \mid \boldsymbol{u}^{T} \hat{\boldsymbol{x}}_{i}<0\right\}
$$

$>$ Note that $u^{T} \hat{x}_{i}=u^{T} \hat{X} e_{i}=\sigma v^{T} e_{i} \rightarrow$

18-30
Two divide and conquer algorithms
Overlap method: divide current set into two overlapping subsets $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}$
Glue method: divide current set into two disjoint subsets $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}$ plus a third set X_{3} called gluing set.

[^1]
The Overlap Method

$>$ Divide current set \boldsymbol{X} into two overlapping subsets:

$$
X_{1}=\left\{x_{i} \mid v_{i} \geq-h_{\alpha}\left(S_{v}\right)\right\} \quad \text { and } \quad X_{2}=\left\{x_{i} \mid v_{i}<h_{\alpha}\left(S_{v}\right)\right\},
$$

- where $S_{v}=\left\{\left|v_{i}\right| \mid i=1,2, \ldots, n\right\}$.
- and $h_{\alpha}(\cdot)$ is a function that returns an element larger than $(100 \alpha) \%$ of those in S_{v}
$>$ Rationale: to ensure that the two subsets overlap $(\mathbf{1 0 0 \alpha}) \%$ of the data, i.e.,

$$
\left|X_{1} \cap X_{2}\right|=\lceil\alpha|X|\rceil .
$$

18-33
Theorem The time complexity for the overlap method is

$$
T_{0}(n)=\Theta\left(d n^{t_{0}}\right), \quad \text { where: } \quad t_{0}=\log _{2 /(1+\alpha)} 2=\frac{1}{1-\log _{2}(1+\alpha)}
$$

\qquad
Note: gluing subset \boldsymbol{X}_{3} here is just the intersection of the sets $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}$ of the overlap method.

$$
\begin{gathered}
X_{1}=\left\{x_{i} \mid v_{i} \geq 0\right\}, \quad X_{2}=\left\{x_{i} \mid v_{i}<0\right\}, \\
X_{3}=\left\{x_{i} \mid-h_{\alpha}\left(S_{v}\right) \leq v_{i}<h_{\alpha}\left(S_{v}\right)\right\} .
\end{gathered}
$$

Divide the set \boldsymbol{X} into two disjoint subsets \boldsymbol{X}_{1} and \boldsymbol{X}_{2} with a gluing subset \boldsymbol{X}_{3} :

$$
X_{1} \cup X_{2}=X, \quad X_{1} \cap X_{2}=\emptyset, \quad X_{1} \cap X_{3} \neq \emptyset, \quad X_{2} \cap X_{3} \neq \emptyset .
$$

Criterion used for splitting:

Theorem The time complexity for the glue method is

$$
T_{\mathrm{g}}(n)=\Theta\left(d n^{t_{\mathrm{g}}} / \alpha\right), \quad \text { where } \quad t_{\mathrm{g}} \equiv \text { sol. to the equ.: } \frac{2}{2^{t}}+\alpha^{t}=1
$$

Example: When $\alpha=0.1$, then $t_{0}=1.16$ while $t_{\mathrm{g}}=1.12$.

Reference:

Jie Chen, Haw-Ren Fang and YS, "Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection" JMLR, vol. 10, pp. 1989-2012 (2009).

Graph embeddings

> We have seen how to build a graph to represent data
> Graph embedding does the opposite: maps a graph to data
Given: a graph that models some data (e.g., a kNN graph)

$$
\longrightarrow \quad \text { Data: } \boldsymbol{Y}=\left[\boldsymbol{y}_{1}, y_{2}, \cdots, y_{n}\right] \text { in } \mathbb{R}^{d}
$$

> Trivial use: visualize a graph $(d=2)$
> Wish: mapping should preserve similarities in graph.

18-37

Eigenmaps uses the graph Laplacean
> Recall: Graph Laplacean is a matrix defined by :

$$
L=D-W
$$

$$
\left\{\begin{array}{l}
w_{i j} \geq 0 \text { if } j \in \operatorname{Adj}(i) \quad D=\operatorname{diag}\left[d_{i i}=\sum_{j \neq i} w_{i j}\right] \\
w_{i j}=0 \text { else }
\end{array}\right.
$$

with $\operatorname{Adj}(i)=$ neighborhood of i (excludes i)
$>$ Remember that vertex i represents data item x_{i}. We will use i or x_{i} to refer to the vertex.
$>$ We will find the y_{i} 's by solving an optimization problem.

Vertex embedding: map every vertex x_{i} to a vector $y_{i} \in \mathbb{R}^{d}$

> Many applications [clustering, finding missing link, semi-supervised learning, community detection, ...]
> Graph captures similarities, closeness, ..., in data Objective: Build a mapping of each vertex i to a data point $y_{i} \in \mathbb{R}^{d}$

> Many methods do this
> Eigenmaps and LLE are two of the best known

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$
\mathcal{F}(\boldsymbol{Y})=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad Y D Y^{\top}=I
$$

Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|y_{i}-y_{j}\right\|$ to be also small (low-Dim. data)
$>$ Original data used indirectly through its graph $>$ Objective function can be translated to a trace (see Property 3 in Lecture notes 9) and will yield a sparse eigenvalue problem

$>$ Problem translates to:

$$
\left\{\begin{array}{l}
\min _{\boldsymbol{Y} \in \mathbb{R}^{d \times n}} \operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{D}-\boldsymbol{W}) \boldsymbol{Y}^{\top}\right] . \\
\boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=\boldsymbol{I}
\end{array}\right.
$$

$>$ Solution (sort eigenvalues increasingly):

$$
(D-W) u_{i}=\lambda_{i} D u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

> An $n \times n$ sparse eigenvalue problem [In 'sample' space]
$>$ Note: can assume $D=I$. Amounts to rescaling data. Problem becomes

$$
(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

18-41

2. Mapping

The y_{i} 's should obey the same 'affinity' as x_{i} 's \rightsquigarrow

Minimize:

$$
\sum_{i}\left\|y_{i}-\sum_{j} w_{i j} y_{j}\right\|^{2} \quad \text { subject to: } \quad Y \text { } \mathbb{q}=0, \quad Y Y^{\top}=I
$$

Solution:

$$
\left(I-W^{\top}\right)(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} .
$$

$>\left(I-W^{\top}\right)(I-W)$ replaces the graph Laplacean of eigenmaps

Locally Linear Embedding (Roweis-Saul-00)

> LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an 'affinity' graph
2) Objective function is changed: want to preserve graph

1. Graph: Each x_{i} is written as a convex

 combination of its k nearest neighbors:$x_{i} \approx \Sigma w_{i j} x_{j}, \quad \sum_{j \in N_{i}} w_{i j}=1$
$>$ Optimal weights computed ('local calculation') by minimizing

$$
\left\|x_{i}-\Sigma w_{i j} x_{j}\right\| \quad \text { for } \quad i=1, \cdots, n
$$

Implicit us explicit mappings
$>\operatorname{In}$ Eigenmaps and LLE we only determine a set of $y_{i}^{\prime} s$ in \mathbb{R}^{d} from the data points $\left\{x_{i}\right\}$.
$>$ The mapping

$$
y_{i}=\phi\left(x_{i}\right), i=1, \cdots, n
$$

is implicit
$>$ Difficult to compute a y for an x that is not one of the x_{i} 's
> Inconvenient for classification. Thus is known as the "The out-of-sample extension" problem
$>$ In Explicit (also known as linear) methods: mapping ϕ is known explicitly (and it is linear.)

Locally Preserving Projections (He-Niyogi-03)

> LPP is a linear dimensionality reduction technique
n
$>$ Recall the setting:
Want $\boldsymbol{V} \in \mathbb{R}^{m \times d} ; \boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
> Starts with the same neighborhood graph as Eigenmaps: $L \equiv D-W=$ graph 'Laplacean’; with $D \equiv \operatorname{diag}\left(\left\{\Sigma_{i} w_{i j}\right\}\right)$.

ONPP (Kokiopoulou and YS '05)

> Orthogonal Neighborhood Preserving Projections
$>$ A linear (orthogonoal) version of LLE obtained by writing Y in the form $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
$>$ Same graph as LLE. Objective: preserve the affinity graph (as in LLE) ${ }^{*}$ but ${ }^{*}$ with the constraint $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
$>$ Problem solved to obtain mapping:

$$
\min _{V} \operatorname{Tr}\left[V^{\top} X\left(I-W^{\top}\right)(I-W) X^{\top} V\right]
$$

s.t. $V^{T} V=I$
$>$ In LLE replace $V^{\top} \boldsymbol{X}$ by \boldsymbol{Y}
$>$ Optimization problem is to solve

$$
\min _{Y \in \mathbb{R}^{\mathbb{R}^{\times n}, Y D Y^{\top}=I}} \Sigma_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}, \quad Y=V^{\top} X .
$$

$>$ Difference with eigenmaps: \boldsymbol{Y} is an explicit projection of \boldsymbol{X}
$>$ Solution (sort eigenvalues increasingly)

$$
\boldsymbol{X} L X^{\top} v_{i}=\lambda_{i} X D X^{\top} v_{i} \quad y_{i,:}=\boldsymbol{v}_{i}^{\top} \boldsymbol{X}
$$

> Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

$$
18-46
$$

More recent methods

> Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... See the following papers ... among many others :
[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learning on Graphs: Methods and Applications arXiv:1709.05584v3
[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph Representations with Global Structural Information, CIKM, ACM Conference on Information and Knowledge Management, 24
[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil]

Example: Graph factorization

> Line of work in Papers [1] and [3] above + others
$>$ Instead of minimizing $\sum w_{i j}\left\|y_{i}-y_{j}\right\|_{2}^{2}$ as before
... try to minimize

$$
\sum_{i j}\left|w_{i j}-y_{i}^{T} y_{j}\right|^{2}
$$

In other words solve: $\quad \min _{Y}\left\|W-Y^{T} Y\right\|_{F}^{2}$
> Referred to as Graph factorization
$>$ Common in knowledge graphs
18.49

[^0]: 18-3

[^1]: $>$ Exploit recursivity

