APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING,
EMBEDDING

* The clustering problem; Basic method: K-means

* Similarity graphs; kNN graphs

» Measures of separation: edge cuts, normalized cuts, etc
* Application: Segmentation

» Graph embeddings; Laplacean Eigenmaps

* Locally Linear Embeddings (LLE)

 Explicit mappings; PCA, LPP, ONPRE..

* Building a knn graph

Clustering

» Problem: we are given n data items: z;,xs,--- ,z,. Would like to
‘cluster’ them, i.e., group them so that each group or cluster contains items
that are similar in some sense.

> Example: materials » Example: Digits
Photovoltaic PCA - digits : 5 —= 7
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» Each group is a ‘cluster’ or a ‘class’ » ‘Unsupervised learning’
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What is ‘Unsupervised Learning’?

Ans: Class of methods that do not exploit labeled data

» Example of digits: perform a 2-D projection

» Images of same digit tend to cluster (more or less)

» Such 2-D representations are popular for visualization

» Can also try to find natural clusters in data, e.g., in materials
>

Basic clusterning technique: K-means
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Example: Community Detection

» Communities modeled by an ‘affinity’ graph [e.g., ‘'user A sends frequent
e-mails to user B’] . [data: www-personal.umich.edu/~mejn/netdata/]

<« Original Adj. matrix

Goal: Find ordering so
blocks are as dense as
possible —

Sty '\-av"m-

Eih

» Use ‘blocking’ techniques for sparse matrices
» Advantage of this viewpoint: need not know # of clusters.
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Example of application | Data set from :

http://www-personal.umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orientations [2004 US
presidentual election]

» ‘Communities’: liberal vs. conservative
» Graph: 1,490 vertices (blogs) : first 758: liberal, rest: conservative.
» Edge: ¢ — j : a citation between blogs 7 and j

» Blocking algorithm (Density theshold=0.4): subgraphs [note: density =
|E|/IV]2]

» Smaller subgraph: conservative blogs, larger one: liberals
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A basic method: K-means

» A basic algorithm that uses Euclidean distance

1 Select p initial centers: ¢4, ¢2, ..., ¢, for classes 1,2,--- ,p
2 For each z; do: determine class of x; as argmin,||z; — cx||
3 Redefine each ¢ to be the centroid of class &

4 Repeat until convergence

\ ° *te » Simple algorithm
° o o o
d .. » Works well (gives good re-
. / « e sults) but can be slow
€2 e ° » Performance depends on ini-
° ® . tialization
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Methods based on similarity graphs

» Class of Methods that perform clustering by exploiting a graph that de-
scribes the similarities between any two items in the data.

» Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair of nodes.

For text data: Can decide that any columns i and 5 with a

cosine greater than 0.95 are ‘similar’ and assign that cosine value to w;;
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First task: build a ‘similarity’ graph

» Goal: to build a similarity
graph, i.e., a graph that captures
similarity between any two items

» Two methods: K-nearest Neighbor graphs or use Gaussian (‘heat’) kernel
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K-nearest neighbor graphs

» Given: a set of n data points X = {xy,...,z,} — vertices

» Given: a proximity measure between two data points x; and z; — as
measured by a quantity dist(x;, x;)

» Want: For each point z; a list of the ‘nearest neighbors’ of z; (edges
between z; and these nodes).

» Note: graph will usually be directed — need to symmetrize
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Nearest neighbor graphs

[ ] o Py
Data ° °
[ J
» For each node, get
a few of the nearest -
neighbors — Graph °
[ J
Graph °
» Problem: How to build a nearest-neighbor graph from given data
»  We will revisit this later.
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Two types of nearest neighbor graph often used:

e-graph: Edges consist of pairs (x;, ;) such that p(z;, ;) < €

ENN graph: Nodes adjacent to x; are those nodes x, with the k with

smallest distances p(x;, ).

» e-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

» kNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’

Define weight between ¢ and j as:

=l —I?

wi; = fi; X ¢ € x !f i — ]| <7
0 if not

» Note ||z; — ;|| could be any measure of distance...
» f;; = optional = some measure of similarity - other than distance
» Only nearby points kept.

» Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

» Assume now that we have built a ‘similarity graph’
» Setting is identical with that of graph partitioning.

» Need a Graph Laplacean: L = D — W with w;; = 0,w;; > 0 and
D = diag(W * ones(n, 1)) [in matlab notation]

» Partition vertex set V in two sets A and B with
AUB=V, ANB=0

» Define

cut(A, B) = Z w(u, v)
u €EAVEB
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» First (naive) approach: use this measure to partition graph, i.e.,
... Find A and B that minimize cut(A, B).

» Issue: Small sets, isolated nodes, big imbalances,
oo  ® O Wincul

0o ¢ e
e o
o
° ® o009 | ® IR
() ) Min-cut 2
[ ) [T X J !
Better cut
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» Standard Graph Partitioning approach: Find A, B by solving

Minimize cut(A, B), subjectto |A| = |B|

» Condition |A| = | B| not too meaningful in some applications - too restric-
tive in others.

» Minimum Ratio Cut approach. Find A, B by solving:

cut(A,B)

Minimize TALIBI

» Difficult to find solution (original paper [Wei-Cheng '91] proposes several
heuristics)

» Approximate solution : spectral .
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Theorem [Hagen-Kahng, 91] If A, is the 2nd smallest eigenvalue of L,
then a lower bound for the cost ¢ of the optimal ratio cut partition, is:

A
02—2.
n

Proof: Consider an optimal partition A, B and let p = |A|/n,q = |B|/n.
Note that p + g = 1. Let « be the vector with coordinates

qg fie A
T = o
—-pifi € B
Note that L 1. Also if (¢, j) == an edge-cut then |z; — ;| = |g — (—p)| =
lg + p| = 1, otherwise x; — x; = 0. Therefore:
e'Le =, o cpwij(z; — ;)* = w(A, B).

In addition: ||z||> = pg*n + qp*n = pq(p + q)n = pqn = 4B

n




Therefore, by the Courant-Fischer theorem:
N < TBD) L w(AB)
(z, x) |Al.| B

n X c.

Hence result. Il

> |dea is to use eigenvector associated with A, to determine partition, e.g.,
based on sign of entries. Use the ratio-cut measure to actually determine
where to split.

Normalized cuts [Shi-Malik,2000]

» Recall notation w(X,Y) = > x.cy w(z,y) - then define:

ncut(A, B) = Cﬁ%f)) + cztg,‘g)

» Goal is to avoid small sets A, B

What is w(A, V) in the case when w;; == 1 ?

> Let = Dbe an indicator _f1ifieca
vector: Ti = 0if i€ B

> Recallthat:  a"La = 57, wijlz; — x;|* (note: each edge counted
once)
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» Therefore: =
>0 di k
cut(A, B) = Z w;j = ¢’ Lz > Let k= 257%;§ b= 1_ & and: y=(1+4+z)—b(1-=x)
z;=1,2;=0 2
w(A,V)=> di=2z"Wi1=2"Df T
21 » Then it can be shown that min yT Y
- i {1,—b} Yy Dy
w(B,V)=> dj=(1-2)"Wi=(1-2)"D1 we need to solve: vi -
=0 Subjectto y"D1=0

» Goal now: to minimize ncut

in ncut(A, B)  2le, @l
min = min
A,B ’ z; €{0,1} xTDx (1 — z)TDx
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» + Relax — need to solve Generalized eigenvalue problem

Ly = A\Dy

» y; = 1 is eigenvector associated with eigenvalue A; = 0

» 1y, associated with second eigenvalue solves problem.
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A few properties

Show that
cut(A, B)

t(A, B) =
neut(4, B) =0 X A V) x w(B, V)

where o is a constant

How do ratio-cuts and normalized cuts compare when the graph is d-
regular (same degree for each node).

Extension to more than 2 clusters

» Just like graph partitioning we can:

1. Apply the method recursively [Repeat clustering on the resulted parts]

2. or compute a few eigenvectors and run K-means clustering on these eigen-
vectors to get the clustering.
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Application: Image segmentation Spectral clustering: General approach

» First task: obtain a graph from pixels.
» Common idea: use “Heat kernels”
» Let F; = feature value (e.g., brightness), and Let X; = spatial position.

Then define

—IF;—F|1? e
wiyj=e °I x e x X - Xl <r
0 else
» Sparsity depends on parameters
Run test mir and test jump
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1 Given: Collection of data samples {z, z2,- -+ , z,}

2 Build a similarity graph be-
tween items

3 Compute (smallest) eigenvector (s) of resulting graph Laplacean
4 Use k-means on eigenvector (s) of Laplacean
» For Normalized cuts solve generalized eigen problem.
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» Recall observation made earlier:

-
%

» Alg. Multiplicity of eigenvalue zero = # connected components.
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KNN GRAPHS

Building a nearest neighbor graph

» Question: How to build a nearest-neighbor graph from given data?
[} o .

» Will demonstrate the power of a divide a conquer approach combined
with the Lanczos algorithm.

°
Data °

[ ]
—_—
[ J

Graph °
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Recall: Two common types of nearest neighbor graphs

e-graph: Edges consist of pairs (z;, ;) such that p(x;, z;) < e

kNN graph: Nodes adjacent to x; are those nodes x, with the k with

smallest distances p(x;, z).

» e-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what €?

» kNN graphs are directed in general (can be trivially fixed).

> kNN graphs especially useful in practice.
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Divide and conquer KNN: key ingredient

» Key ingredient is Spectral bisection
» Let the data matrix X = [zy,...,z,] € R¥>"
» Each column == a data point.

> Center the data: X = [&1,...,%,] = X — ce”
where ¢ == centroid; e = ones(d, 1) (matlab)

Goal: Split X into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, '98.

ldea: Use the (o, u,v) = largest singular triplet of X with: uTX = ogvT.
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» Hyperplane is defined as (u,z) = 0, i.e., it splits the set of data points
into two subsets:

X, ={x; |uT2; >0} and X_ = {z;|u’%; <O0}.

+ SIDE
_ SIDE Hyperplane

» Note that u”#; = uTXe; = cvTe; —
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X+={;c,-|vi20} and X_={;c,-|vi<0},

where v; is the ¢-th entry of v.

» |In practice: replace above criterion by

X ={zx;|vi>med(v)} & X_ = {x; | v; < med(v)}

where med(v) == median of the entries of v.

» For largest singular triplet (o, u,v) of X : use Golub-Kahan-Lanczos
algorithm or Lanczos applied to X X7 or X7 X

» Cost (assuming s Lanczos steps) : O(n x d x s) ; Usually: d very small
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Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets X, X»

Glue method: divide current set into two disjoint subsets X, X5 plus a third
set X; called gluing set.

: «— hyperplane <«— hyperplane

X | X

» Exploit recursivity
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The Overlap Method

» Divide current set X into two overlapping subsets:

X, = {.’ILL | v; > —ha(Sv)} and Xo = {«'Bz | v; < ha(Sv)}a

e where S, = {|vi| | 1 =1,2,...,n}.

e and h,(-) is a function that returns an element larger than (100a)% of
those in S,,.

» Rationale: to ensure that the two subsets overlap (100a)% of the data,
i.e.,
| XN Xs| = [a|X]|].
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The Glue Method

Divide the set X into two disjoint subsets X; and X, with a gluing subset X3:

XUXo =X, XiNXe=0, XiNX3#0, XN Xs3#0.

Criterion used for splitting:

Xy ={z;|vi >0}, X,={x;|v <0},
X3 = {CB, I _ha(Sv) <wv < ha(Sv)}-

Note: gluing subset X3 here is just the intersection of the sets X, X, of the
overlap method.
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Theorem The time complexity for the overlap method is
1

To(n) = O(dn'), where: 1 —logy(1 1+ )
2

to =1083/(11a)2 =

Theorem The time complexity for the glue method is

2
Ty(n) = ©(dn'e/a), where t4 = sol. tothe equ.: 5T ol = 1.

When o = 0.1, then ¢, = 1.16 while ty = 1.12.

Reference:

Jie Chen, Haw-Ren Fang and YS, “Fast Approximate kNN Graph Construc-
tion for High Dimensional Data via Recursive Lanczos Bisection” JMLR, vol.
10, pp. 1989-2012 (2009).
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Graph embeddings

» We have seen how to build a graph to represent data
» QGraph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)

— Data: Y = [y1,y2,- -+ ,yn] IN R?

» Trivial use: visualize a graph (d = 2)
» Wish: mapping should preserve similarities in graph.
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Vertex embedding: map every vertex x; to a vector y; € R<

» Many applications [clustering, finding missing link, semi-supervised learn-
ing, community detection, ...]

» Graph captures similarities, closeness, ..., in data <)
Objective: Build a mapping of each vertex i to a \\\

data pointy; € R?

» Many methods do this

» Eigenmaps and LLE are two of the best known
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» Eigenmaps uses the graph Laplacean
» Recall: Graph Laplacean is a matrix defined by :

L=D-W

{ w;; > 0 if j € Adj(d) D = diag [d“ _ Zwij]

w;; =0 else o

with Adj(¢) = neighborhood of i (excludes <)

» Remember that vertex i represents data item x;. We will use ¢ or z; to
refer to the vertex.

» We will find the y;’s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

FY)= Z wijllyi — y;l|* subject to YDY =1

4,J=1

Motivation:  if ||x; — x;|| is small (orig. data), we
want ||y; — y,|| to be also small (low-Dim. data)
» Original data used indirectly through its graph
» Obijective function can be translated to a trace
(see Property 3 in Lecture notes 9) and will yield
a sparse eigenvalue problem
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» Problem translates to:

min T [Y(D-W)YT] .
Y ¢ Rdxn
YDY ' =1
» Solution (sort eigenvalues increasingly):

(D—W)uiz)\,'Dui; ylzu;r, i=1,---,d

» Ann x n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data. Problem becomes

(I—W)ui:)\iui; yz:u;r’ t=1,---,d
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each z; is written as a convex
combination of its k nearest neighbors:
x; & Yw;xj, ZjeNi wi; =1
» Optimal weights computed (’local calcula-
tion’) by minimizing

|z — Swijxs|| for i=1,---,n
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2. Mapping:
The y;’s should obey the same ’affinity’ as x;’s ~~

Minimize:
2

Z Yi — Z w;;Y;j SUbjeCt to: Y1=0, YY' =1
J

%

Solution:

(I — WT)(I — W)ul = )\,u“ Y = ’U,T .

T

» (I —WT)(I — W) replaces the graph Laplacean of eigenmaps
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Implicit vs explicit mappings

> In Eigenmaps and LLE we only determine a set of y/s in R from the data
points {x;}.

» The mapping ¥i = ¢(zi),s =1,--- ,m isimplicit

» Difficult to compute a y for an « that is not one of the z;’s

» Inconvenient for classification. Thus is known as the “The out-of-sample
extension” problem

» In Explicit (also known as linear) methods: mapping ¢ is known explicitly
(and it is linear.)
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Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting: m
WantV e R4y = VTX m
allvt [y wlm e

» Starts with the same neighborhood graph as Eigenmaps: L= D — W =
graph ‘Laplacean’; with D = diag({Z;wi;}).
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» Optimization problem is to solve

i o 4RAas a2 T
YeRng,n}?DYT:I Sijwijllyi —yll”, Y=V X.

» Difference with eigenmaps: Y is an explicit projection of X
» Solution (sort eigenvalues increasingly)

XLXT’U,L' = A,XDXT’U,L Yi,. = ’U;I—X

» Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

» Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y in the form
Y=V'X

» Same graph as LLE. Objective: preserve the affinity graph (as in LLE)
*but* with the constraint Y = VT X

» Problem solved to obtain mapping:
min Tr [VIXIT-WH(I -W)X V]
st. VIV =1

» InLLE replace V' X by Y
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More recent methods

» Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... See the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24

[8] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13-17,
2013, Rio de Janeiro, Brazil]
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Example: Graph factorization

» Line of work in Papers [1] and [3] above + others

» Instead of minimizing > wi;||ly; — y;l|3 as before

... try to minimize > lwi; — yly;l?
ij

» In other words solve: = miny |W — Y'Y||%,

» Referred to as Graph factorization

» Common in [knowledge graphs|

18-49 — graphEmbed




