
APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING,

EMBEDDING

• The clustering problem; Basic method: K-means

• Similarity graphs; kNN graphs

• Measures of separation: edge cuts, normalized cuts, etc

• Application: Segmentation

• Graph embeddings; Laplacean Eigenmaps

• Locally Linear Embeddings (LLE)

• Explicit mappings; PCA, LPP, ONPP,..

• Building a knn graph

Clustering

ä Problem: we are given n data items: x1, x2, · · · , xn. Would like to
‘cluster’ them, i.e., group them so that each group or cluster contains items
that are similar in some sense.

ä Example: materials
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ä Each group is a ‘cluster’ or a ‘class’ ä ‘Unsupervised learning’
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What is ‘Unsupervised Learning’?

Ans: Class of methods that do not exploit labeled data

ä Example of digits: perform a 2-D projection

ä Images of same digit tend to cluster (more or less)

ä Such 2-D representations are popular for visualization

ä Can also try to find natural clusters in data, e.g., in materials

ä Basic clusterning technique: K-means
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Example: Community Detection

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A sends frequent
e-mails to user B’] . [data: www-personal.umich.edu/∼mejn/netdata/]

← Original Adj. matrix
Goal: Find ordering so

blocks are as dense as
possible→

ä Use ‘blocking’ techniques for sparse matrices
ä Advantage of this viewpoint: need not know # of clusters.
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Example of application Data set from :

http://www-personal.umich.edu/∼mejn/netdata/

ä Network connecting bloggers of different political orientations [2004 US
presidentual election]

ä ‘Communities’: liberal vs. conservative

ä Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.

ä Edge: i→ j : a citation between blogs i and j

ä Blocking algorithm (Density theshold=0.4): subgraphs [note: density =
|E|/|V |2.]

ä Smaller subgraph: conservative blogs, larger one: liberals
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A basic method: K-means

ä A basic algorithm that uses Euclidean distance

1 Select p initial centers: c1, c2, ..., cp for classes 1, 2, · · · , p
2 For each xi do: determine class of xi as argmink‖xi − ck‖
3 Redefine each ck to be the centroid of class k
4 Repeat until convergence
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ä Simple algorithm
ä Works well (gives good re-
sults) but can be slow
ä Performance depends on ini-
tialization

18-6 – Clustering

Methods based on similarity graphs

ä Class of Methods that perform clustering by exploiting a graph that de-
scribes the similarities between any two items in the data.

ä Need to:

1. decide what nodes are in the neighborhood of a given node

2. quantify their similarities - by assigning a weight to any pair of nodes.

Example: For text data: Can decide that any columns i and j with a
cosine greater than 0.95 are ‘similar’ and assign that cosine value to wij
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First task: build a ‘similarity’ graph

ä Goal: to build a similarity
graph, i.e., a graph that captures
similarity between any two items
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w(i,j)=?

ä Two methods: K-nearest Neighbor graphs or use Gaussian (‘heat’) kernel
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K-nearest neighbor graphs

ä Given: a set of n data points X = {x1, . . . , xn} → vertices

ä Given: a proximity measure between two data points xi and xj – as
measured by a quantity dist(xi, xj)

ä Want: For each point xi a list of the ‘nearest neighbors’ of xi (edges
between xi and these nodes).

ä Note: graph will usually be directed→ need to symmetrize
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Nearest neighbor graphs

ä For each node, get
a few of the nearest
neighbors→ Graph
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Data

Graph

ä Problem: How to build a nearest-neighbor graph from given data

ä We will revisit this later.
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Two types of nearest neighbor graph often used:

ε-graph: Edges consist of pairs (xi, xj) such that ρ(xi, xj) ≤ ε

kNN graph: Nodes adjacent to xi are those nodes x` with the k with
smallest distances ρ(xi, x`).

ä ε-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what ε?

ä kNN graphs are directed in general (can be trivially fixed).

ä kNN graphs especially useful in practice.
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Similarity graphs: Using ‘heat-kernels’

Define weight between i and j as:

wij = fij ×




e

−‖xi−xj‖2

σ2X if ‖xi − xj‖ < r

0 if not

ä Note ‖xi − xj‖ could be any measure of distance...

ä fij = optional = some measure of similarity - other than distance

ä Only nearby points kept.

ä Sparsity depends on parameters
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Edge cuts, ratio cuts, normalized cuts, ...

ä Assume now that we have built a ‘similarity graph’

ä Setting is identical with that of graph partitioning.

ä Need a Graph Laplacean: L = D − W with wii = 0, wij ≥ 0 and
D = diag(W ∗ ones(n, 1)) [in matlab notation]

ä Partition vertex set V in two sets A and B with

A ∪B = V, A ∩B = ∅

ä Define

cut(A,B) =
∑

u ∈A,v∈B
w(u, v)
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ä First (naive) approach: use this measure to partition graph, i.e.,

... Find A and B that minimize cut(A,B).

ä Issue: Small sets, isolated nodes, big imbalances,
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Ratio-cuts

ä Standard Graph Partitioning approach: Find A,B by solving

Minimize cut(A,B), subject to |A| = |B|

ä Condition |A| = |B| not too meaningful in some applications - too restric-
tive in others.

ä Minimum Ratio Cut approach. Find A,B by solving:

Minimize cut(A,B)
|A|.|B|

ä Difficult to find solution (original paper [Wei-Cheng ’91] proposes several
heuristics)

ä Approximate solution : spectral .
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Theorem [Hagen-Kahng, 91] If λ2 is the 2nd smallest eigenvalue of L,
then a lower bound for the cost c of the optimal ratio cut partition, is:

c ≥ λ2

n
.

Proof: Consider an optimal partition A,B and let p = |A|/n, q = |B|/n.
Note that p+ q = 1. Let x be the vector with coordinates

xi =

{
q if i ∈ A

−p if i ∈ B

Note that x ⊥ 1. Also if (i, j) == an edge-cut then |xi − xj| = |q − (−p)| =
|q + p| = 1, otherwise xi − xj = 0. Therefore:
xTLx =

∑
(i,j)∈E wij(xi − xj)2 = w(A,B).

In addition: ‖x‖2 = pq2n+ qp2n = pq(p+ q)n = pqn = |A|.|B|
n

.



Therefore, by the Courant-Fischer theorem:

λ2 ≤
(Lx, x)

(x, x)
= n× w(A,B)

|A|.|B| = n× c.

Hence result.

ä Idea is to use eigenvector associated with λ2 to determine partition, e.g.,
based on sign of entries. Use the ratio-cut measure to actually determine
where to split.
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Normalized cuts [Shi-Malik,2000]

ä Recall notation w(X,Y ) =
∑

x∈X,y∈Y w(x, y) - then define:

ncut(A,B) = cut(A,B)
w(A,V )

+ cut(A,B)
w(B,V )

ä Goal is to avoid small sets A, B

-1 What is w(A, V ) in the case when wij == 1 ?

ä Let x be an indicator
vector: xi =

{
1 if i ∈ A
0 if i ∈ B

ä Recall that: xTLx =
∑

(i,j)∈E wij|xi − xj|2 (note: each edge counted
once)
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ä Therefore:

cut(A,B) =
∑

xi=1,xj=0

wij = xTLx

w(A, V ) =
∑

xi=1

di = xTW 1 = xTD 1

w(B, V ) =
∑

xj=0

dj = ( 1− x)TW 1 = ( 1− x)TD 1

ä Goal now: to minimize ncut

min
A,B

ncut(A,B) = min
xi ∈{0,1}

xTLx

xTDx
+

xTLx

( 1− x)TDx
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ä Let k =

∑
xi>0 di∑
i di

; b =
k

1− k; and: y = ( 1 + x)− b( 1− x)

ä Then it can be shown that
we need to solve:

min
yi {1,−b}

yTLy

yTDy

Subject to yTD 1 = 0

ä + Relax→ need to solve Generalized eigenvalue problem

Ly = λDy

ä y1 = 1 is eigenvector associated with eigenvalue λ1 = 0

ä y2 associated with second eigenvalue solves problem.
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A few properties

-2 Show that

ncut(A,B) = σ × cut(A,B)

w(A, V )× w(B, V )

where σ is a constant

-3 How do ratio-cuts and normalized cuts compare when the graph is d-
regular (same degree for each node).
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Extension to more than 2 clusters

ä Just like graph partitioning we can:

1. Apply the method recursively [Repeat clustering on the resulted parts]

2. or compute a few eigenvectors and run K-means clustering on these eigen-
vectors to get the clustering.
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Application: Image segmentation

ä First task: obtain a graph from pixels.

ä Common idea: use “Heat kernels”

ä Let Fj = feature value (e.g., brightness), and Let Xj = spatial position.

Then define

wij = e

−‖Fi−Fj‖2

σ2I ×




e

−‖Xi−Xj‖2

σ2X if‖Xi −Xj‖ < r

0 else

ä Sparsity depends on parameters

-4 Run test mir and test jump
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Spectral clustering: General approach

1 Given: Collection of data samples {x1, x2, · · · , xn}

2 Build a similarity graph be-
tween items

●

●

●

●

●

●

●

i

j

w(i,j)=?

3 Compute (smallest) eigenvector (s) of resulting graph Laplacean

4 Use k-means on eigenvector (s) of Laplacean

ä For Normalized cuts solve generalized eigen problem.
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ä Recall observation made earlier:
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ä Alg. Multiplicity of eigenvalue zero = # connected components.
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KNN GRAPHS

Building a nearest neighbor graph

ä Question: How to build a nearest-neighbor graph from given data?
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Data

Graph

ä Will demonstrate the power of a divide a conquer approach combined
with the Lanczos algorithm.
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Recall: Two common types of nearest neighbor graphs

ε-graph: Edges consist of pairs (xi, xj) such that ρ(xi, xj) ≤ ε

kNN graph: Nodes adjacent to xi are those nodes x` with the k with
smallest distances ρ(xi, x`).

ä ε-graph is undirected and is geometrically motivated. Issues: 1) may
result in disconnected components 2) what ε?

ä kNN graphs are directed in general (can be trivially fixed).

ä kNN graphs especially useful in practice.
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Divide and conquer KNN: key ingredient

ä Key ingredient is Spectral bisection

ä Let the data matrix X = [x1, . . . , xn] ∈ Rd×n

ä Each column == a data point.

ä Center the data: X̂ = [x̂1, . . . , x̂n] = X − ceT
where c == centroid; e = ones(d, 1) (matlab)

Goal: Split X̂ into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, ’98.

Idea: Use the (σ, u, v) = largest singular triplet of X̂ with: uTX̂ = σvT .

18-29 – knn

ä Hyperplane is defined as 〈u, x〉 = 0, i.e., it splits the set of data points
into two subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}.

●

● + SIDE

− SIDE 
Hyperplane

u

ä Note that uT x̂i = uTX̂ei = σvTei→
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X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0},

where vi is the i-th entry of v.

ä In practice: replace above criterion by

X+ = {xi | vi ≥ med(v)} & X− = {xi | vi < med(v)}

where med(v) == median of the entries of v.

ä For largest singular triplet (σ, u, v) of X̂ : use Golub-Kahan-Lanczos
algorithm or Lanczos applied to X̂X̂T or X̂TX̂

ä Cost (assuming s Lanczos steps) : O(n× d× s) ; Usually: d very small
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Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets X1, X2

Glue method: divide current set into two disjoint subsetsX1, X2 plus a third
set X3 called gluing set.

hyperplane

X1 X2

hyperplane

X1 X2X3

ä Exploit recursivity
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The Overlap Method

ä Divide current set X into two overlapping subsets:

X1 = {xi | vi ≥ −hα(Sv)} and X2 = {xi | vi < hα(Sv)},

• where Sv = {|vi| | i = 1, 2, . . . , n}.

• and hα(·) is a function that returns an element larger than (100α)% of
those in Sv.

ä Rationale: to ensure that the two subsets overlap (100α)% of the data,
i.e.,

|X1 ∩X2| = dα|X|e .
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The Glue Method

Divide the set X into two disjoint subsets X1 and X2 with a gluing subset X3:

X1 ∪X2 = X, X1 ∩X2 = ∅, X1 ∩X3 6= ∅, X2 ∩X3 6= ∅.

Criterion used for splitting:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi | −hα(Sv) ≤ vi < hα(Sv)}.

Note: gluing subset X3 here is just the intersection of the sets X1, X2 of the
overlap method.
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Theorem The time complexity for the overlap method is

To(n) = Θ(dnto), where: to = log2/(1+α) 2 =
1

1− log2(1 + α)
.

Theorem The time complexity for the glue method is

Tg(n) = Θ(dntg/α), where tg ≡ sol. to the equ.:
2

2t
+ αt = 1.

Example: When α = 0.1, then to = 1.16 while tg = 1.12.

Reference:

Jie Chen, Haw-Ren Fang and YS, “Fast Approximate kNN Graph Construc-
tion for High Dimensional Data via Recursive Lanczos Bisection” JMLR, vol.
10, pp. 1989-2012 (2009).
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Graph embeddings

ä We have seen how to build a graph to represent data

ä Graph embedding does the opposite: maps a graph to data

Given: a graph that models some data (e.g., a kNN graph)
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−→ Data: Y = [y1, y2, · · · , yn] in Rd

ä Trivial use: visualize a graph (d = 2)

ä Wish: mapping should preserve similarities in graph.
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Vertex embedding: map every vertex xi to a vector yi ∈ Rd

ä Many applications [clustering, finding missing link, semi-supervised learn-
ing, community detection, ...]

ä Graph captures similarities, closeness, ..., in data
Objective: Build a mapping of each vertex i to a

data point yi ∈ Rd

x

x
j

i

y
i

y
j

ä Many methods do this

ä Eigenmaps and LLE are two of the best known
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ä Eigenmaps uses the graph Laplacean

ä Recall: Graph Laplacean is a matrix defined by :

L = D −W

{
wij ≥ 0 if j ∈ Adj(i)
wij = 0 else

D = diag


dii =

∑

j 6=i
wij




with Adj(i) = neighborhood of i (excludes i)

ä Remember that vertex i represents data item xi. We will use i or xi to
refer to the vertex.

ä We will find the yi’s by solving an optimization problem.
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The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =

n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small (orig. data), we
want ‖yi − yj‖ to be also small (low-Dim. data)
ä Original data used indirectly through its graph
ä Objective function can be translated to a trace
(see Property 3 in Lecture notes 9) and will yield
a sparse eigenvalue problem

x

x
j

i

y
i

y
j

18-40 – graphEmbed



ä Problem translates to:

min


Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D −W )Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W )ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä An n× n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assumeD = I. Amounts to rescaling data. Problem becomes

(I −W )ui = λiui ; yi = u>i ; i = 1, · · · , d
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a convex
combination of its k nearest neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1

ä Optimal weights computed (’local calcula-
tion’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i

18-42 – graphEmbed

2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:

∑

i

∥∥∥∥∥∥
yi −

∑

j

wijyj

∥∥∥∥∥∥

2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I −W>)(I −W )ui = λiui; yi = u>i .

ä (I −W>)(I −W ) replaces the graph Laplacean of eigenmaps
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Implicit vs explicit mappings

ä In Eigenmaps and LLE we only determine a set of y′is in Rd from the data
points {xi}.

ä The mapping yi = φ(xi), i = 1, · · · , n is implicit

ä Difficult to compute a y for an x that is not one of the xi’s

ä Inconvenient for classification. Thus is known as the “The out-of-sample
extension” problem

ä In Explicit (also known as linear) methods: mapping φ is known explicitly
(and it is linear.)
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Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:
Want V ∈ Rm×d; Y = V >X

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä Starts with the same neighborhood graph as Eigenmaps: L ≡ D −W =
graph ‘Laplacean’; with D ≡ diag({Σiwij}).
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ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is an explicit projection of X

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX
>vi yi,: = v>i X

ä Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y in the form
Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph (as in LLE)
*but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]

s.t. V TV = I

ä In LLE replace V >X by Y
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More recent methods

ä Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,
.... See the following papers ... among many others :

[1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learn-
ing on Graphs: Methods and Applications arXiv:1709.05584v3

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph
Representations with Global Structural Information, CIKM, ACM Conference
on Information and Knowledge Management, 24

[3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy , Distributed
Large-scale Natural Graph Factorization [Proc. WWW 2013, May 13–17,
2013, Rio de Janeiro, Brazil]
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Example: Graph factorization

ä Line of work in Papers [1] and [3] above + others

ä Instead of minimizing
∑
wij‖yi − yj‖2

2 as before

... try to minimize
∑

ij

|wij − yTi yj|2

ä In other words solve: minY ‖W − Y TY ‖2
F

ä Referred to as Graph factorization

ä Common in knowledge graphs
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