

C S C I 8314

SPARSE MATRIX COMPUTATIONS

Class time : MW 9:45-11:00am
 Room : Ackerman Hall 211
 Instructor : Yousef Saad

January 17, 2023
Set 3 Applications of sparse matrix techniques

- Applications of graphs; Graph Laplaceans; Networks ...;
- Standard Applications (PDEs, ..)
- Applications in machine learning
- Data-related applications
- Other instances of sparse matrix techniques

About this class: Objectives

Set 1 An introduction to sparse matrices and sparse matrix computations.

- Sparse matrices;
- Sparse matrix direct methods ;
- Graph theory viewpoint; graph theory methods;

Set 2 Iterative methods and eigenvalue problems

- Iterative methods for linear systems
- Algorithms for sparse eigenvalue problems and the SVD
- Possibly: nonlinear equations

0-1
Please fill out (now if you can)
This survey

Short link url:
https://forms.gle/i5MCBg3X289JMAHd8

\qquad

```
Who is in this class today?
```

> Out of 20 [as of Tuesday] - registered

- 5 in Computer Science
- 5 in Aerospace Engineering
- 2 Electrical Engineering
- 2 Civil Engineering
- 2 Chemical Engineering/ Materials Science
- 2 Mathematics
- 1 Statistics
- 1 Industrial \& Systems Eng.
\qquad - start8314

Logistics:

> Lecture notes and minimal information will be located here:
8314 at cselabs class web-sites
URL:
https://www-users.cselabs.umn.edu/classes/Spring-2023/csci8314
[also follow: 'teaching' at www.cs.umn.edu: /saad]
> There you will find:

- Lecture notes, Schedule of assignments/ tests, class info
> Canvas will contain the rest of the information: assignments, grades, etc.

0-5

- start8314

Matlab, Python-Numpy, etc..
> Important to use either Matlab (mostly) or Python to quickly illustrate and test algorithms.
> Scripts in either matlab or python will be posted in the 'matlab' section of the class web-site.
> Also: matlab or python demos seen in class will be posted
> Lecture note sets are grouped by topics rather than by lecture.
$>$ In the notes the symbol indicates suggested easy exercises or questions - often [not always] done in class.
> Also: occasional practice exercises posted

Roadmap - [subject to itinerary change!]

Part 1 1. Sparse matrices;

2. Graph representations;
3. Sparse direct methods for linear systems;

Part 2 4. Iterative methods for linear systems ;
5. Projection methods and Krylov subspace methods;
6. Eigenvalue problems;

Part 3 7. Back to Graphs; Paths in graphs; Markov Chains;
8. Graph centrality;
9. Graph Laplaceans and applications; Clustering;
10. Graph embeddings.

Historical Perspective: Focus of numerical linear algebra
> Linear algebra took many direction changes in the past
1940s-1950s: Major issue: flutter problem in aerospace engineering \rightarrow eigenvalue problem [cf. Olga Taussky Todd] \rightarrow LR, QR, .. \rightarrow 'EISPACK'
1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques
1970s- Automotive, Aerospace, ... Computational Fluid Dynamics (CFD)
Late 1980s: Thrust on parallel matrix computations.
Late 1990s: Spur of interest in "financial computing"
Current: Machine Learning

CSCI 8314: SPARSE MATRIX COMPUTATIONS

GENERAL INTRODUCTION

- General introduction - a little history
- Motivation
- Resources
- What will this course cover
- Examples of problems leading to sparse matrix computations

Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng. (e.g. structures) major force behind numerical linear algebra algorithms in the past few decades.
$>$ Strong new forces are now reshaping the field today: Applications related to the use of "data"
> Machine learning is appearing in unexpected places:

- design of materials
- machine learning in geophysics
- self-driving cars, ..
-

Big impact on the economy	Big impact on the economy
> New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...) > Huge impact on Jobs	New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...) > Huge impact on Jobs
- Intro	Old leaders - e.g., Mining; Car companies; Aerospace; Manufacturing; offer little growth - Some instances of renewal driven by new technologies [e.g. Tesla] Look at what you are doing under new lenses: DATA \qquad
Sparse matrices: a brief history	> Early work on reordering for banded systems, envelope methods
Sparse matrices have been identified as important early on - origins of terminology is quite old. Gauss defined the first method for such systems in 1823. Varga used explicitly the term 'sparse' in his 1962 book on iterative methods. https://www-users.cs.umn.edu/~saad/PDF/icerm2018.pdf	Various reordering techniques for general sparse matrices introduced. Minimal degree ordering [Markowitz - 1957] later used in Harwell MA28 code [Duff] - released in 1977. Tinney-Walker Minimal degree ordering for power systems [1967]
> Special techniques used for sparse problems coming from Partial Differential Equations	> Nested Dissection [A. George, 1973] > SPARSPAK [commercial code, Univ. Waterloo]
One has to wait until to the 1960s to see the birth of the general methodology available today	> Elimination trees, symbolic factorization, ...
Graphs introduced as tools for sparse Gaussian elimination in 1961 [Seymour Parter] 1-6 \qquad - Intro	

History: development of iterative methods

> 1950s up to 1970s: focus on "relaxation" methods
> Development of 'modern' iterative methods took off in the mid-70s. but...
$>$... The main ingredients were in place earlier [late 40s, early 50s: Lanczos; Arnoldi ; Hestenes (a local!) and Stiefel;]
> The next big advance was the push of 'preconditioning': in effect a way of combining iterative and (approximate) direct methods - [Meijerink and Van der Vorst, 1977]
https://www-users.cs.umn.edu//saad/PDF/NIST75th.pdf

History: eigenvalue problems

- Another parallel branch was followed in sparse techniques for large eigenvalue problems.
> A big problem in 1950s and 1960s : flutter of airplane wings.. This leads to a large (sparse) eigenvalue problem
$>$ Overlap between methods for linear systems and eigenvalue problems [Lanczos, Arnoldi]

Resources

> SuiteSparse site (Formerly : Florida collection)
https://sparse.tamu.edu/
> SPARSKIT, etc. [SPARSKIT = old written in Fortran. + more recent 'solvers']
http://www.cs.umn.edu/~saad/software

Resources - continued

Books:
 on sparse direct methods.

> Book by Tim Davis [SIAM, 2006] see syllabus for info
> An old reference [Still a great book]: Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.
$>$ Of interest mostly for references:

- I. S. Duff and A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Clarendon press, Oxford, 1986.
- Some coverage in Golub and van Loan [John Hopinks, 4th Ed., Chap. 10
to end]
1-11 - Intro

Example: Vibrations

Vibrations in mechanical systems. See: www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Problem: Determine the vibration modes of the mechanical system [to avoid resonance]. See details in Chapter 10 (sec. 10.2) of above reference.
> Problem type: Eigenvalue Problem

Example: Power networks
> Electrical circuits .. [Kirchhiff's voltage Law]

Problem: Determine the loop currents in a an electrical circuit - using Kirchhoff's Law ($V=R I$)
> Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]

[^0]
Example: Google Rank (pagerank)

If one were to do a random walk from web page to web page, following each link on a given web page at random with equal likelihood, which are the pages to be encountered this way most often?

> Problem type: (homogeneous) Linear system. Eigenvector problem.

1-17

- BackShort

Example: Economics/ Marketing/ Social Networks
$>$ Given: an influence graph G : $g_{i j}=$ strength of influence of j over i
$>$ Goal: charge member i price p_{i} in order to maximize profit
$>$ Utility for member i : $\left[x_{i}=\right.$ consumption of i]

$$
u_{i}=a x_{i}-b x_{i}^{2}+\sum_{j \neq i} g_{i j} x_{j}-p_{i} x_{i}
$$

- 1: 'Monopolist' fixes prices; 2: agent i fixes consumption x_{i}

Result: Optimal pricing proportional to Bonacich centrality: $(I-\alpha G)^{-1}$ it where $\alpha=\frac{1}{2 b}$ [Candogan et al., $2012+$ many refs.]

Example: Method of least-squares

> First use of least squares by Gauss, in early 1800's:
$>$ 'centrality' defines a measure of importance of a node (or an edge) in a graph
> Many other ideas of centrality in graphs [degree centrality, betweenness centrality, closeness centrality, ...]
> Important application: Social Network Analysis
A planet follows an elliptical orbit according to $a y^{2}+b x y+c x+d y+e=x^{2}$ in cartesian coordinates. Given a set of noisy observations of (x, y) positions, compute a, b, c, d, e, and use to predict future positions of the planet. This least squares problem is nearly rank-deficient and hence very sensitive to perturbations in the observations.
> Problem type: Least-Squares system
Read Wikipedia's article on planet ceres:
http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)

1-21 BackShort

Example: Dynamical systems and epidemiology
A set of variables that fill a vector y are governed by the equation

$$
\frac{d y}{d t}=A y
$$

Determine $y(t)$ for $t>0$, given $y(0)$ [called 'orbit' of y]
> Problem type: (Linear) system of ordinary differential equations.

Solution:

$$
y(t)=e^{t A} y(0)
$$

> Involves exponential of A [think Taylor series], i.e., a matrix function


```
General Problems in Numerical Linear Algebra (dense & sparse)
```

```
SPARSE MATRICES
    - Linear systems: }\boldsymbol{Ax}=\boldsymbol{b}\mathrm{ . Often: }\boldsymbol{A}\mathrm{ is large and sparse
- Least-squares problems min |b-Ax|}\mp@subsup{|}{2}{
- Eigenvalue problem Ax=\lambdax. Several variations -
- SVD .. and
■ ... Low-rank approximation
- Tensors and low-rank tensor approximation
- Matrix equations: Sylvester, Lyapunov, Riccati, ..
■ Nonlinear equations - acceleration methods
■ Matrix functions and applications
■ Many many more ...
```


What are sparse matrices?
Pattern of a small sparse matrix

```
- See the "links" page on the class web-site
- See also the various sparse matrix sites.
- Introduction to sparse matrices
- Sparse matrices in matlab -
- See Chap. 3 of text
```

- Tensors and low-rank tensor approximation
- Matrix equations: Sylvester, Lyapunov, Riccati, ..
- Nonlinear equations - acceleration methods
- Matrix functions and applications
- Many many more ...
What are sparse matrices?

```

```

Pater

```
_..matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)
```


A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, Google Page rank, information retrieval (LSI), circuit similation, device simulation,
\square
\qquad
Look up Cayley-Hamilton's theorem if you do not know about it.Show that the inverse of a matrix (when it exists) can be expressed as a polynomial of A, where the polynomial is of degree $\leq n-1$.When is the degree $<n-1$? [Hint: look-up minimal polynomial of a matrix]What is the pattern of the inverse of a tridiagonal matrix? a bidiagonal matrix?

Goal of Sparse Matrix Techniques

> To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

Example: To add two square dense matrices of size n requires $O\left(n^{2}\right)$ operations. To add two sparse matrices A and B requires $O(\operatorname{nnz}(A)+$ $\boldsymbol{n n z}(\boldsymbol{B})$) where $\boldsymbol{n n z}(\boldsymbol{X})=$ number of nonzero elements of a matrix \boldsymbol{X}.
$>$ For typical Finite Element /Finite difference matrices, number of nonzero elements is $O(n)$.
Remark: \boldsymbol{A}^{-1} is usually dense, but L and U in the $L U$ factorization may be reasonably sparse (if a good technique is used)

1-29
Nonzero patterns of a few sparse matrices

ARC 130: Unsymmetric matix from laser problem. ar.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

> Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.
> 3-D problems lead to more challenging systems [inherent to the underlying graph]

Difficulty:

- No robust 'black-box' iterative solvers.
- At issue: Robustness in conflict with efficiency.
> Iterative methods are starting to use some of the tools of direct solvers to gain 'robustness'

Consensus:

1. Direct solvers are often preferred for two-dimensional problems (robust and not too expensive).
2. Direct methods loose ground to iterative techniques for three-dimensional problems, and problems with a large degree of freedom per grid point,

1-36 Chap 3-sparse
Sparse matrices in matlab
> Matlab supports sparse matrices to some extent.
> Can define sparse objects by conversion

```
A = sparse(X) ; X = full(A)
```

> Can show pattern
spy (X)
Define the analogues of ones, eye:

$$
\text { speye }(n, m), \quad \text { spones }(\text { pattern })
$$

1-37
A few reorderings functions provided.. [will be studied in detail later]

```
symrcm, symamd, colamd, colperm
```

> Random sparse matrix generator:

$$
\text { sprand (S) or sprand }(m, n, \text { density) }
$$

(also textttsprandn(...))
> Diagonal extractor-generator utility:

```
spdiags(A) , spdiags(B,d,m,n)
```

$>$ Other important functions:

```
spalloc(..) ,find(..)
```

spalloc(..) ,find(..)
\qquad

Graph Representations of Sparse Matrices

> Graph theory is a fundamental tool in sparse matrix techniques.
DEFINITION. A graph \boldsymbol{G} is defined as a pair of sets $G=(\boldsymbol{V}, \boldsymbol{E})$ with $\boldsymbol{E} \subset$ $\boldsymbol{V} \times \boldsymbol{V}$. So G represents a binary relation. The graph is undirected if the binary relation is reflexive. It is directed otherwise. \boldsymbol{V} is the vertex set and \boldsymbol{E} is the edge set.

Example: Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the relations

R1: Either $x<y$ or y divides x.
R2: x and y are congruent modulo 3. $[\bmod (x, 3)=\bmod (y, 3)]$

Graph of a tridiagonal matrix? Of a dense matrix?

Example: (undirected graph)

$>$ Adjacency Graph $G=(\boldsymbol{V}, \boldsymbol{E})$ of an $n \times n$ matrix \boldsymbol{A} :

- Vertices $V=\{1,2, \ldots ., n\}$.
- Edges $E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$.
$>$ Often self-loops (i, i) are not represented [because they are always there]
> Graph is undirected if the matrix has a symmetric structure:

$$
a_{i j} \neq 0 \quad \text { iff } \quad a_{j i} \neq 0 .
$$

Recall what a star graph is. Show a matrix whose graph is a star graph. Consider two situations: Case when center node is labeled first and case when it is labeled last.
> Note: Matlab now has a graph function.
$>G=$ graph (A) creates adjacency graph from \boldsymbol{A}
$>G$ is a matlab class/
$>$ G. Nodes will show the vertices of G
> G.Edges will show its edges.
$>\operatorname{plot}(G)$ will show a representation of the graph
$\triangle 0$ Do the following:

- Load the matrix 'Bmat.mat' located in the class web-site (see 'matlab' folder)
- Visualize pattern (spy (B)) + find: Number of nonzero elements, size, ...
- Generate graph - without self-edges:

G = graph (B,'OmitSelfLoops'

- Plot the graph -
- \$1M question: Any idea on how this plot is generated?

[^0]: ${ }^{1-18}$
 \qquad

