UNIVERSITY OF MINNESOTA TWIN CITIES	About this class: Objectives Set 1 An introduction to sparse matrices and sparse matrix computations.
C S C I 8314 Spring 2023	 Sparse matrices; Sparse matrix direct methods ;
SPARSE MATRIX COMPUTATIONS	Graph theory viewpoint; graph theory methods;
Class time: MW 9:45 – 11:00amRoom: Ackerman Hall 211Instructor: Yousef Saad	 Iterative methods for linear systems Algorithms for sparse eigenvalue problems and the SVD
January 17, 2023	• Possibly: nonlinear equations
Set 3 Applications of sparse matrix techniques	Please fill out (now if you can)
 Applications of graphs; Graph Laplaceans; Networks; Standard Applications (PDEs,) Applications in machine learning Data-related applications Other instances of sparse matrix techniques 	Short link url: https://forms.gle/i5MCBg3X289JMAHd8
<u>0-2 – start831</u>	14 <u>0-3 – start8314</u>

Who is in this class today?

- Out of 20 [as of Tuesday] registered
 - 5 in Computer Science
 - 5 in Aerospace Engineering
 - 2 Electrical Engineering
 - 2 Civil Engineering
 - 2 Chemical Engineering/ Materials Science
 - 2 Mathematics
 - 1 Statistics
 - 1 Industrial & Systems Eng.

– start8314

About lecture notes:

0-4

0-6

- ► Lecture notes (like this first set) will be posted on the class web-site usually before the lecture.
- Review them to get some understanding if possible before class.
- Read the relevant section (s) in the texts or provided references
- Lecture note sets are grouped by topics rather than by lecture.
- ➤ In the notes the symbol ▲1 indicates suggested easy exercises or questions often [not always] done in class.
- Also: occasional practice exercises posted

Logistics:

Lecture notes and minimal information will be located here: <u>8314 at cselabs class web-sites</u>

URL:

https://www-users.cselabs.umn.edu/classes/Spring-2023/csci8314

[also follow: 'teaching' at www.cs.umn.edu: /saad]

- There you will find :
- Lecture notes, Schedule of assignments/ tests, class info
- Canvas will contain the rest of the information: assignments, grades, etc.
- 0-5

0-7

Matlab, Python-Numpy, etc..

Important to use either Matlab (mostly) or Python to quickly illustrate and test algorithms.

- Scripts in either matlab or python will be posted in the 'matlab' section of the class web-site.
- Also: matlab or python demos seen in class will be posted

– start8314

- start8314

Part 1 1. Sparse matrices; 2. Graph representations; 3. Sparse direct methods for linear systems; Part 2 4. Iterative methods for linear systems; Part 2 4. Iterative methods for linear systems; 5. Projection methods and Krylov subspace methods; 6. Eigenvalue problems; Part 3 7. Back to Graphs; Paths in graphs; Markov Chains; 8. Graph centrality; 9. Graph Laplaceans and applications; Clustering; 10. Graph embeddings. - start8314	CSCI 8314: SPARSE MATRIX COMPUTATIONS GENERAL INTRODUCTION • General introduction - a little history • Motivation • Resources • What will this course cover • Examples of problems leading to sparse matrix computations
 Historical Perspective: Focus of numerical linear algebra Linear algebra took many direction changes in the past 1940s-1950s: Major issue: flutter problem in aerospace engineering → [eigenvalue problem] [cf. Olga Taussky Todd] → LR, QR, → 'EISPACK' 1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques 	 Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng. (e.g. structures) major force behind numerical linear algebra algorithms in the past few decades. Strong new forces are now reshaping the field today: Applications related to the use of "data" Machine learning is appearing in unexpected places: design of materials
 1970s- Automotive, Aerospace,: Computational Fluid Dynamics (CFD) Late 1980s: Thrust on parallel matrix computations. Late 1990s: Spur of interest in "financial computing" Current: Machine Learning 	 machine learning in geophysics self-driving cars,

Big impact on the economy

1-6

➤ New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)

> Huge impact on **Jobs**

Big impact on the economy

► New economy driven by Google, Facebook, Netflix, Amazon, Twitter, Ali-Baba, Tencent, ..., and even the big department stores (Walmart, ...)

> Huge impact on **Jobs**

Old leaders - e.g., Mining; Car companies;
 Aerospace; Manufacturing; offer little growth
 Some instances of renewal driven by new technologies [e.g. Tesla]

> Look at what you are doing under new lenses: DATA

5_____

- > Early work on reordering for banded systems, envelope methods
- Various reordering techniques for general sparse matrices introduced.
- Minimal degree ordering [Markowitz 1957] ...
- In later used in Harwell MA28 code [Duff] released in 1977.
- Tinney-Walker Minimal degree ordering for power systems [1967]
- Nested Dissection [A. George, 1973]
- SPARSPAK [commercial code, Univ. Waterloo]
- > Elimination trees, symbolic factorization, ...

Sparse matrices: a brief history

Sparse matrices have been identified as important early on – origins of terminology is quite old. Gauss defined the first method for such systems in 1823. Varga used explicitly the term 'sparse' in his 1962 book on iterative methods.

https://www-users.cs.umn.edu/~saad/PDF/icerm2018.pdf

 Special techniques used for sparse problems coming from Partial Differential Equations

- One has to wait until to the 1960s to see the birth of the general methodology available today
- Graphs introduced as tools for sparse Gaussian elimination in 1961 [Seymour Parter]

– Intro

Intro

- Intro

History: development of iterative methods	History: eigenvalue problems
 1950s up to 1970s : focus on "relaxation" methods Development of 'modern' iterative methods took off in the mid-70s. but The main ingredients were in place earlier [late 40s, early 50s: Lanc-zos; Arnoldi ; Hestenes (a local!) and Stiefel;] The next big advance was the push of 'preconditioning': in effect a way of combining iterative and (opproximate) direct methods	 Another parallel branch was followed in sparse techniques for large eigenvalue problems. A big problem in 1950s and 1960s : flutter of airplane wings This leads to a large (sparse) eigenvalue problem Overlap between methods for linear systems and eigenvalue problems [Lanczos, Arnoldi]
or combining iterative and (approximate) direct methods – [Meijerink and Van der Vorst, 1977] https://www-users.cs.umn.edu/~saad/PDF/NIST75th.pdf 1-8 - Intro	
Kesources	Resources – continued
https://sparse.tamu.edu/	 Books: on sparse direct methods. Book by Tim Davis [SIAM, 2006] see svllabus for info
SPARSKIT, etc. [SPARSKIT = old written in Fortran. + more recent 'solvers']	An old reference [Still a great book]: Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.
http://www.cs.umn.edu/~saad/software	Of interest mostly for references:
	• I. S. Duff and A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Clarendon press, Oxford, 1986.
	• Some coverage in Golub and van Loan [John Hopinks, 4th Ed., Chap. 10 to end]
- Intro	- Intro

BACKGROUND: PROBLEMS LEADING TO SPARSE MATRICES

Example: Fluid flow

Background: Examples leading to sparse matrices

- > The classical: CFD, electrical networks,
- ... and the modern:
- Graph algorithms and tools (Sparse graphs, graph coarsening, graphs and sparse methods). ..
- Dimension reduction methods; Graph embeddings;
- Specific machine learning algorithms; unsupervised/ supervised learning;
- Deep learning;
- Network analysisl
- ····
- 1-13

Example: Eigenvalue Problems

> Many applications require the computation of a few eigenvalues + associated eigenvectors of a matrix A

- Structural Engineering (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..] – Quantum chemistry
- Stability analysis [e.g., electrical networks, mechanical system,..]

•...

- BackShort

Example: Vibrations

> Vibrations in mechanical systems. See: www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Problem: Determine the vibration modes of the mechanical system [to avoid resonance]. See details in Chapter 10 (sec. 10.2) of above reference.

Problem type: Eigenvalue Problem

Example: Power networks

1-16

Example: Google Rank (pagerank)

If one were to do a random walk from web page to web page, following each link on a given web page at random with equal likelihood, which are the pages to be encountered this way most often?

Problem type: (homogeneous) Linear system. Eigenvector problem. \succ

Result: Optimal pricing proportional to Bonacich centrality:

 $(I - \alpha G)^{-1}$ 1 where $\alpha = \frac{1}{2b}$ [Candogan et al., 2012 + many refs.]

1-19

Problem: Determine the loop currents in a an electrical circuit - using Kirchhoff's Law (V = RI)

Problem: Sparse Linear Systems [at the origin Sparse Direct Methods] - BackShort 1-18

- BackShort

 Many other ideas of centrality in graphs [degree centrality, betweenness centrality, closeness centrality,] Important application: Social Network Analysis 	 cartesian coordinates. Given a set of noisy observations of (x, y) positions, compute a, b, c, d, e, and use to predict future positions of the planet. This least squares problem is nearly rank-deficient and hence very sensitive to perturbations in the observations. Problem type: Least-Squares system Read Wikipedia's article on planet ceres:
1-20 - BackShort	http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)
The problem is provided by the equation $\frac{dy}{dt} = Ay$ Determine $y(t)$ for $t > 0$, given $y(0)$ [called 'orbit' of y] > Problem type: (Linear) system of ordinary differential equations. Solution: $y(t) = e^{tA}y(0)$ > Involves exponential of A [think Taylor series], i.e., a matrix function	 This is the simplest form of dynamical systems (linear). Consider the slightly more complex system: $\frac{dy}{dt} = A(y)y$ Nonlinear. Requires 'integration scheme'.
1-22 – BackShort	1-23 – BackShort

> 'centrality' defines a measure of importance of a node (or an edge) in a graph

Example: Method of least-squares

> First use of least squares by Gauss, in early 1800's:

A planet follows an elliptical orbit according to $ay^2 + bxy + cx + dy + e = x^2$ in

General Problems in Numerical Linear Algebra (dense & sparse)	SPARSE MATRICES
 Linear systems: Ax = b. Often: A is large and sparse Least-squares problems min b - Ax ₂ Eigenvalue problem Ax = λx. Several variations - SVD and Low-rank approximation Tensors and low-rank tensor approximation Matrix equations: Sylvester, Lyapunov, Riccati, Nonlinear equations – acceleration methods Matrix functions and applications Many many more 	 See the "links" page on the class web-site See also the various sparse matrix sites. Introduction to sparse matrices Sparse matrices in matlab – See Chap. 3 of text
What are sparse matrices?	 Vague definition: matrix with few nonzero entries For all practical purposes: an m×n matrix is sparse if it has O(min(m, n)) nonzero entries.
	This means roughly a constant number of nonzero entries per row and column -
	> This definition excludes a large class of matrices that have $O(\log(n))$ nonzero entries per row.
	Other definitions use a slow growth of nonzero entries with respect to n or m.
Pattern of a small sparse matrix	
1-26 Chap 3 – sparse	1-27Chap 3 – sparse

"...matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)

A few applications which lead to sparse matrices:

1-28

1-30

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, Google Page rank, information retrieval (LSI), circuit similation, device simulation,

Chap 3 – sparse 1-29 Look up Cayley-Hamilton's theorem if you do not know about it. Show that the inverse of a matrix (when it exists) can be expressed as 103 a polynomial of A, where the polynomial is of degree < n - 1. 4 When is the degree < n - 1? [Hint: look-up minimal polynomial of a matrix] What is the pattern of the inverse of a tridiagonal matrix? a bidiagonal £05 matrix?

Goal of Sparse Matrix Techniques

> To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires O(nnz(A) +nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

For typical Finite Element /Finite difference matrices, number of nonzero elements is O(n).

 A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used) **Remark:**

Chap 3 – sparse

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

Chap 3 - sparse

1-31

Chap 3 - sparse

 Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems. 3-D problems lead to more challenging systems [inherent to the underlying graph] <u>Difficulty:</u> No robust 'black-box' iterative solvers. At issue: Robustness in conflict with efficiency. Iterative methods are starting to use some of the tools of direct solvers to gain 'robustness' 	 Consensus: 1. Direct solvers are often preferred for two-dimensional problems (robust and not too expensive). 2. Direct methods loose ground to iterative techniques for three-dimensional problems, and problems with a large degree of freedom per grid point,
1-36 Chap 3 - sparse Sparse matrices in matlab Natlab supports sparse matrices to some extent.	 <u>Chap 3 - sparse</u> A few reorderings functions provided [will be studied in detail later] symrcm, symamd, colamd, colperm
 Can define sparse objects by conversion A = sparse(X) ; X = full(A) Can show pattern spy(X) 	 Random sparse matrix generator: sprand(S) or sprand(m, n, density) (also textttsprandn()) Diagonal extractor-generator utility: spdiags(A), spdiags(B,d,m,n)
Define the analogues of ones, eye: speye(n,m), spones(pattern) 1-38	Other important functions: spalloc() , find() 1-39 Chap 3 - sparse

Note: Matlab now has a graph function.		Do the following:
 G = graph (A) creates adjacency graph from A G is a matlab class/ 		 Load the matrix 'Bmat.mat' located in the class web-site (see 'matlab' folder)
 G.Nodes will show the vertices of G G.Edges will show its edges. plot (G) will show a representation of the graph 		 Visualize pattern (spy(B)) + find: Number of nonzero elements, size, Generate graph - without self-edges: G = graph (B, 'OmitSelfLoops'
		 Plot the graph – \$1M question: Any idea on how this plot is generated?
1-44	Chap 3 – sparse1	1-45 Chap 3 – sparse1