
C S C I 8314 Spring 2023

SPARSE MATRIX COMPUTATIONS

Class time : MW 9:45 – 11:00am
Room : Ackerman Hall 211
Instructor : Yousef Saad

January 17, 2023

About this class: Objectives

Set 1 An introduction to sparse matrices and sparse matrix computations.

• Sparse matrices;

• Sparse matrix direct methods ;

• Graph theory viewpoint; graph theory methods;

Set 2 Iterative methods and eigenvalue problems

• Iterative methods for linear systems

• Algorithms for sparse eigenvalue problems and the SVD

• Possibly: nonlinear equations
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Set 3 Applications of sparse matrix techniques

• Applications of graphs; Graph Laplaceans; Networks ...;

• Standard Applications (PDEs, ..)

• Applications in machine learning

• Data-related applications

• Other instances of sparse matrix techniques
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ä Please fill out (now if you can)

This survey

Short link url:

https://forms.gle/i5MCBg3X289JMAHd8
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Who is in this class today?

ä Out of 20 [as of Tuesday] - registered

• 5 in Computer Science

• 5 in Aerospace Engineering

• 2 Electrical Engineering

• 2 Civil Engineering

• 2 Chemical Engineering/ Materials Science

• 2 Mathematics

• 1 Statistics

• 1 Industrial & Systems Eng.
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Logistics:

ä Lecture notes and minimal information will be located here:
8314 at cselabs class web-sites

URL:

https://www-users.cselabs.umn.edu/classes/Spring-2023/csci8314

[also follow: ’teaching’ at www.cs.umn.edu: /saad]

ä There you will find :

• Lecture notes, Schedule of assignments/ tests, class info

ä Canvas will contain the rest of the information: assignments, grades, etc.
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About lecture notes:

ä Lecture notes (like this first set) will be posted on the class web-site –
usually before the lecture.

ä Review them to get some understanding if possible before class.

ä Read the relevant section (s) in the texts or provided references

ä Lecture note sets are grouped by topics rather than by lecture.

ä In the notes the symbol -1 indicates suggested easy exercises or
questions – often [not always] done in class.

ä Also: occasional practice exercises posted
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Matlab, Python-Numpy, etc..

ä Important to use either Matlab (mostly) or Python to quickly illustrate and
test algorithms.

ä Scripts in either matlab or python will be posted in the ‘matlab’ section of
the class web-site.

ä Also: matlab or python demos seen in class will be posted
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Roadmap – [subject to itinerary change!]

Part 1 1. Sparse matrices;
2. Graph representations;
3. Sparse direct methods for linear systems;

Part 2 4. Iterative methods for linear systems ;
5. Projection methods and Krylov subspace methods;
6. Eigenvalue problems;

Part 3 7. Back to Graphs; Paths in graphs; Markov Chains;
8. Graph centrality;
9. Graph Laplaceans and applications; Clustering;
10. Graph embeddings.
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CSCI 8314: SPARSE MATRIX COMPUTATIONS

GENERAL INTRODUCTION

• General introduction - a little history

• Motivation

• Resources

• What will this course cover

• Examples of problems leading to sparse matrix computations

Historical Perspective: Focus of numerical linear algebra

ä Linear algebra took many direction changes in the past

1940s–1950s: Major issue: flutter problem in aerospace engineering
→ eigenvalue problem [cf. Olga Taussky Todd]→ LR, QR, .. → ‘EISPACK’

1960s: Problems related to the power grid promoted what we would call
today general sparse matrix techniques

1970s– Automotive, Aerospace, ..: Computational Fluid Dynamics ( CFD )

Late 1980s: Thrust on parallel matrix computations .

Late 1990s: Spur of interest in “financial computing”

Current: Machine Learning
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Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng.
(e.g. structures) major force behind numerical linear algebra algorithms in
the past few decades.

ä Strong new forces are now reshaping the field today: Applications related
to the use of “data”

ä Machine learning is appearing in unexpected places:

• design of materials

• machine learning in geophysics

• self-driving cars, ..

• ....
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Big impact on the economy

ä New economy driven by Google, Face-
book, Netflix, Amazon, Twitter, Ali-Baba, Ten-
cent, ..., and even the big department stores
(Walmart, ...)

ä Huge impact on Jobs
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Big impact on the economy

ä New economy driven by Google, Face-
book, Netflix, Amazon, Twitter, Ali-Baba, Ten-
cent, ..., and even the big department stores
(Walmart, ...)

ä Huge impact on Jobs

ä Old leaders - e.g., Mining; Car companies;
Aerospace; Manufacturing; offer little growth
– Some instances of renewal driven by new
technologies [e.g. Tesla]

ä Look at what you are doing under new lenses: DATA
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Sparse matrices: a brief history

Sparse matrices have been identified as important early on – origins of
terminology is quite old. Gauss defined the first method for such systems
in 1823. Varga used explicitly the term ’sparse’ in his 1962 book on
iterative methods.

https://www-users.cs.umn.edu/∼saad/PDF/icerm2018.pdf

ä Special techniques used for sparse problems coming from Partial Differ-
ential Equations

ä One has to wait until to the 1960s to see the birth of the general method-
ology available today

ä Graphs introduced as tools for sparse Gaussian elimination in 1961 [Sey-
mour Parter]
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ä Early work on reordering for banded systems, envelope methods

ä Various reordering techniques for general sparse matrices introduced.

ä Minimal degree ordering [Markowitz - 1957] ...

ä ... later used in Harwell MA28 code [Duff] - released in 1977.

ä Tinney-Walker Minimal degree ordering for power systems [1967]

ä Nested Dissection [A. George, 1973]

ä SPARSPAK [commercial code, Univ. Waterloo]

ä Elimination trees, symbolic factorization, ...
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History: development of iterative methods

ä 1950s up to 1970s : focus on “relaxation” methods

ä Development of ’modern’ iterative methods took off in the mid-70s. but...

ä ... The main ingredients were in place earlier [late 40s, early 50s: Lanc-
zos; Arnoldi ; Hestenes (a local!) and Stiefel; ....]

ä The next big advance was the push of ‘preconditioning’: in effect a way
of combining iterative and (approximate) direct methods – [Meijerink and Van
der Vorst, 1977]

https://www-users.cs.umn.edu/∼saad/PDF/NIST75th.pdf
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History: eigenvalue problems

ä Another parallel branch was followed in sparse techniques for large eigen-
value problems.

ä A big problem in 1950s and 1960s : flutter of airplane wings.. This leads
to a large (sparse) eigenvalue problem

ä Overlap between methods for linear systems and eigenvalue problems
[Lanczos, Arnoldi]
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Resources

ä SuiteSparse site (Formerly : Florida collection)

https://sparse.tamu.edu/

ä SPARSKIT, etc. [SPARSKIT = old written in Fortran. + more recent
‘solvers’]

http://www.cs.umn.edu/∼saad/software
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Resources – continued

Books: on sparse direct methods.

ä Book by Tim Davis [SIAM, 2006] see syllabus for info

ä An old reference [Still a great book]: Alan George and Joseph W-H Liu,
Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall,
1981.

ä Of interest mostly for references:

• I. S. Duff and A. M. Erisman and J. K. Reid, Direct Methods for Sparse
Matrices, Clarendon press, Oxford, 1986.

• Some coverage in Golub and van Loan [John Hopinks, 4th Ed., Chap. 10
to end]
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BACKGROUND: PROBLEMS LEADING TO SPARSE MATRICES

Background: Examples leading to sparse matrices

ä The classical: CFD, electrical networks,

ä ... and the modern:

Graph algorithms and tools (Sparse graphs, graph coarsening, graphs
and sparse methods). ..

Dimension reduction methods; Graph embeddings;

Specific machine learning algorithms; unsupervised/ supervised learning;

Deep learning;

Network analysisl

...
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Example: Fluid flow

Physical Model
↓

Nonlinear PDEs
↓

Discretization
↓

Linearization (Newton)
↓

Sparse Linear Systems Ax = b
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Example: Eigenvalue Problems

ä Many applications require the computation of a few eigenvalues + asso-
ciated eigenvectors of a matrix A

• Structural Engineering – (Goal: fre-
quency response)

• Electronic structure calculations
[Schrödinger equation..] –
Quantum chemistry

• Stability analysis [e.g., electrical
networks, mechanical system,..]

• ...
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Example: Vibrations

ä Vibrations in mechanical systems. See:
www.cs.umn.edu/∼saad/eig book 2ndEd.pdf

Problem: Determine the vibration modes of the
mechanical system [to avoid resonance]. See
details in Chapter 10 (sec. 10.2) of above
reference.

jjjjj
jjjjj
m1

m2

l1

l2

k1

k2

ä Problem type: Eigenvalue Problem
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Example: Google Rank (pagerank)

If one were to do a random walk
from web page to web page, fol-
lowing each link on a given web
page at random with equal likeli-
hood, which are the pages to be
encountered this way most often?

ä Problem type: (homogeneous) Linear system. Eigenvector problem.
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Example: Power networks

ä Electrical circuits .. [Kirchhiff’s voltage Law]

1 Ω 1 Ω

1 Ω1 Ω

1 Ω

4 Ω

30 v 20v

5v

3 Ω

Ω4

Problem: Determine the loop currents in a an electrical circuit - using Kirch-
hoff’s Law (V = RI)

ä Problem: Sparse Linear Systems [at the origin Sparse Direct Methods]
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Example: Economics/ Marketing/ Social Networks

ä Given: an influence graph G: gij = strength of influence of j over i
ä Goal: charge member i price pi in
order to maximize profit
ä Utility for member i: [xi = con-
sumption of i]

ui = axi − bx2
i +

∑

j 6=i
gijxj − pixi

• 1: ‘Monopolist’ fixes prices; 2: agent i fixes consumption xi

Result : Optimal pricing proportional to Bonacich centrality:
(I − αG)−1 1 where α = 1

2b
[Candogan et al., 2012 + many refs.]
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ä ’centrality’ defines a measure of importance of a node (or an edge) in a
graph

ä Many other ideas of centrality in graphs [degree centrality, betweenness
centrality, closeness centrality, ...]

ä Important application: Social Network Analysis
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Example: Method of least-squares

ä First use of least squares by Gauss, in early 1800’s:

A planet follows an elliptical orbit according to ay2+bxy+cx+dy+e = x2 in
cartesian coordinates. Given a set of noisy observations of (x, y) positions,
compute a, b, c, d, e, and use to predict future positions of the planet. This
least squares problem is nearly rank-deficient and hence very sensitive to
perturbations in the observations.

ä Problem type: Least-Squares system

Read Wikipedia’s article on planet ceres:

http://en.wikipedia.org/wiki/Ceres (dwarf planet)
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Example: Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

dy

dt
= Ay

Determine y(t) for t > 0, given y(0) [called ‘orbit’ of y]

ä Problem type: (Linear) system of ordinary differential equations.

Solution: y(t) = etAy(0)

ä Involves exponential of A [think Taylor series], i.e., a matrix function
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ä This is the simplest form of dynamical systems (linear).

ä Consider the slightly more complex system:

dy

dt
= A(y)y

ä Nonlinear. Requires ‘integration scheme’.
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General Problems in Numerical Linear Algebra (dense & sparse)

Linear systems: Ax = b. Often: A is large and sparse

Least-squares problems min ‖b−Ax‖2
Eigenvalue problem Ax = λx. Several variations -

SVD .. and

... Low-rank approximation

Tensors and low-rank tensor approximation

Matrix equations: Sylvester, Lyapunov, Riccati, ..

Nonlinear equations – acceleration methods

Matrix functions and applications

Many many more ...
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SPARSE MATRICES

• See the “links” page on the class web-site

• See also the various sparse matrix sites.

• Introduction to sparse matrices

• Sparse matrices in matlab –

• See Chap. 3 of text

What are sparse matrices?

Pattern of a small sparse matrix

1-26 Chap 3 – sparse

ä Vague definition: matrix with few nonzero entries

ä For all practical purposes: anm×nmatrix is sparse if it hasO(min(m,n))

nonzero entries.

ä This means roughly a constant number of nonzero entries per row and
column -

ä This definition excludes a large class of matrices that have O(log(n))

nonzero entries per row.

ä Other definitions use a slow growth of nonzero entries with respect to n
or m.
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‘‘..matrices that allow special techniques to take advantage of the large
number of zero elements.” (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation,
Electrical Networks, optimization, Google Page rank, information retrieval
(LSI), circuit similation, device simulation, .....
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Goal of Sparse Matrix Techniques

ä To perform standard matrix computations economically i.e., without stor-
ing the zeros of the matrix.

Example: To add two square dense matrices of size n requires O(n2)

operations. To add two sparse matrices A and B requires O(nnz(A) +

nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of nonzero
elements is O(n).

Remark:
A−1 is usually dense, but L and U in the LU factorization may
be reasonably sparse (if a good technique is used)
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-2 Look up Cayley-Hamilton’s theorem if you do not know about it.

-3 Show that the inverse of a matrix (when it exists) can be expressed as
a polynomial of A, where the polynomial is of degree ≤ n− 1.

-4 When is the degree < n − 1? [Hint: look-up minimal polynomial of a
matrix]

-5 What is the pattern of the inverse of a tridiagonal matrix? a bidiagonal
matrix?
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Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by  3 grid, 3 unk
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BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP
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Types of sparse matrices

ä Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g.
BP 1000)

ä The matrices PORES3 and SHERMAN5 are from Oil Reservoir Simula-
tion. Often: 3 unknowns per mesh point (Oil , Water saturations, Pressure).
Structured matrices.

ä 40 years ago reservoir simulators used rectangular grids.

ä Modern simulators: Finer, more complex physics ä harder and larger
systems. Also: unstructured matrices

ä A naive but representative challenge problem: 100 × 100 × 100 grid +
about 10 unknowns per grid point ä N ≈ 107, and nnz ≈ 7× 108.
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Solving sparse linear systems: existing methods

General

Purpose

 Specialized

Direct sparse 
Solvers

Iterative 

A x = b
∆ u = f− + bc

Methods 
Preconditioned Krylov

Fast Poisson
Solvers 

Multigrid
Methods 

1-34 Chap 3 – sparse

Two types of methods for general systems:

ä Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..

ä Iterative methods: compute a sequence of iterates which converge to the
solution - preconditioned Krylov methods..

Remark: These two classes of methods have always been in competi-
tion.

ä 40 years ago solving a system with n = 10, 000 was a challenge

ä Now you can solve this in a fraction of a second on a laptop.

1-35 Chap 3 – sparse



ä Sparse direct methods made huge gains in efficiency. As a result they
are very competitive for 2-D problems.

ä 3-D problems lead to more challenging systems [inherent to the underly-
ing graph]

Difficulty:

• No robust ‘black-box’ iterative solvers.

• At issue: Robustness in conflict with efficiency.

ä Iterative methods are starting to use some of the tools of direct solvers to
gain ’robustness’
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Consensus:

1. Direct solvers are often preferred for two-dimensional problems (robust
and not too expensive).

2. Direct methods loose ground to iterative techniques for three-dimensional
problems, and problems with a large degree of freedom per grid point,
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Sparse matrices in matlab

ä Matlab supports sparse matrices to some extent.

ä Can define sparse objects by conversion

A = sparse(X) ; X = full(A)

ä Can show pattern

spy(X)

ä Define the analogues of ones, eye:

speye(n,m), spones(pattern)
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ä A few reorderings functions provided.. [will be studied in detail later]

symrcm, symamd, colamd, colperm

ä Random sparse matrix generator:

sprand(S) or sprand(m,n, density)

(also textttsprandn(...) )

ä Diagonal extractor-generator utility:

spdiags(A) , spdiags(B,d,m,n)

ä Other important functions:

spalloc(..) , find(..)
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Graph Representations of Sparse Matrices

ä Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V,E) with E ⊂
V × V . So G represents a binary relation. The graph is undirected if the
binary relation is reflexive. It is directed otherwise. V is the vertex set and
E is the edge set.

Example: Given the numbers 5, 3, 9, 15, 16, show the two graphs
representing the relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [ mod(x,3) = mod(y,3)]
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ä Adjacency Graph G = (V,E) of an n× n matrix A :

• Vertices V = {1, 2, ...., n}.

• Edges E = {(i, j)|aij 6= 0}.

ä Often self-loops (i, i) are not represented [because they are always there]

ä Graph is undirected if the matrix has a symmetric structure:

aij 6= 0 iff aji 6= 0.
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Example: (directed graph)
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Example: (undirected graph)




? ?

? ?

? ?

? ?




1

3

2

4
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-6 Graph of a tridiagonal matrix? Of a dense matrix?

-7 Adjacency graph of: A =




? ? ?

? ? ? ?

? ?

? ?

? ? ? ?

? ? ?




?

-8 Recall what a star graph is. Show a matrix whose graph is a star graph.
Consider two situations: Case when center node is labeled first and case
when it is labeled last.
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ä Note: Matlab now has a graph function.

ä G = graph(A) creates adjacency graph from A

ä G is a matlab class/

ä G.Nodes will show the vertices of G

ä G.Edges will show its edges.

ä plot(G) will show a representation of the graph
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-9 Do the following:

• Load the matrix ’Bmat.mat’ located in the class web-site (see ‘matlab’
folder)

• Visualize pattern (spy(B)) + find: Number of nonzero elements, size, ...

• Generate graph - without self-edges:

G = graph(B,’OmitSelfLoops’

• Plot the graph –

• $1M question: Any idea on how this plot is generated?
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