DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

Goal: to show how partial differential lead to sparse linear systems

- See Chap. 2 of text
- Finite difference methods
- Finite elements
- Assembled and unassembled finite element matrices

Why study discretized PDEs?

> One of the most important sources of sparse linear systems
$>$ Will help understand the structures of the problem and their connections with "meshes" in 2-D or 3-D space
> Also: iterative methods are often formulated for the PDE directly - instead of a discretized (sparse) system.

NOTE: Useful to have an idea of how Finite Difference matrices are generated. For Finite Elements: goal is to unravel the related sparse computations to which they lead.

2-2
Chap 2 - discr
A typical numerical simulation
Physical Problem \rightarrow

Sequence of Sparse Linear Systems $A x=b$
> Common Partial Differential Equation (PDE) :
$\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=f$, for $x=\binom{x_{1}}{x_{2}}$ in Ω
where $\Omega=$ bounded, open domain in \mathbb{R}^{2}

Example: discretized Poisson equation
> + boundary conditions:

	Dirichlet:	$u(x)$	$=\phi(x)$
	Neumann:	$\frac{\partial u}{\partial \vec{n}}(x)$	$=0$
	Cauchy:	$\frac{\partial u}{\partial \bar{n}}+\alpha(x) u$	$=\gamma$

$>\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}$ is the Laplace operator or Laplacean
$>$ How to approximate the Poisson problem shown above?
> Answer: discretize, i.e., replace continuum with discrete set.
> Then approximate Laplacean using this discretization
> Many types of discretizations.. wll briefly cover Finite Differences (FD) and Finite Elements (FEM)

Finite Differences: Basic approximations

$>$ Formulas derived from Taylor series expansion:

$$
u(x+h)=u(x)+h \frac{d u}{d x}+\frac{h^{2}}{2} \frac{d^{2} u}{d x^{2}}+\frac{h^{3}}{6} \frac{d^{3} u}{d x^{3}}+\frac{h^{4}}{24} \frac{d^{4} u}{d x^{4}}(\xi)
$$

2-5

Notation

$$
\begin{aligned}
& \delta^{+} u(x)=u(x+h)-u(x) \\
& \delta^{-} u(x)=u(x)-u(x-h)
\end{aligned}
$$

> Operations of the type:

$$
\frac{d}{d x}\left[a(x) \frac{d}{d x}\right]
$$

are common [in-homogeneous media].
> The following is a second order approximation:

$$
\begin{align*}
\frac{d}{d x}\left[a(x) \frac{d u}{d x}\right] & =\frac{1}{h^{2}} \delta^{+}\left(a_{i-\frac{1}{2}} \delta^{-} u\right)+O\left(h^{2}\right) \tag{2}\\
& \approx \frac{a_{i+\frac{1}{2}}\left(u_{i+1}-u_{i}\right)-a_{i-\frac{1}{2}}\left(u_{i}-u_{i-1}\right)}{h^{2}}
\end{align*}
$$

(01 Show that $\delta^{+}\left(a_{i-\frac{1}{2}} \delta^{-} u\right)=\delta^{-}\left(a_{i+\frac{1}{2}} \delta^{+} u\right)$
\qquad 2-7

Finite Differences for 2-D Problems

Consider the simple problem,

$$
\begin{align*}
-\left(\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}\right) & =f & \text { in } \Omega \tag{1}\\
u & =0 & \text { on } \Gamma
\end{align*}
$$

$\Omega=$ rectangle $\left(0, l_{1}\right) \times\left(0, l_{2}\right)$ and Γ its boundary.
Discretize uniformly :

$$
\begin{array}{lll}
x_{1, i}=i \times h_{1} & i=0, \ldots, n_{1}+1 & h_{1}=\frac{l_{1}}{n_{1}+1} \\
x_{2, j}=j \times h_{2} & j=0, \ldots, n_{2}+1 & h_{2}=\frac{l_{2}}{n_{2}+1}
\end{array}
$$

Finite Difference Scheme for the Laplacean

$>$ Use centered differences for $\frac{\partial^{2}}{\partial x_{1}^{2}}$ and $\frac{\partial^{2}}{\partial x_{2}^{2}}$ - with mesh sizes $h_{1}=h_{2}=h$:

$$
\begin{aligned}
\Delta u(x) \approx & \frac{1}{h^{2}}
\end{aligned} \quad\left[u\left(x_{1}+h, x_{2}\right)+u\left(x_{1}-h, x_{2}\right)+\right.\text {. }
$$

The 5-point 'stencil:'

Finite Element Method (FEM): a quick overview

Background: Green's formula
$\int_{\Omega} \nabla v \cdot \nabla u d x=-\int_{\Omega} v \Delta u d x+\int_{\Gamma} v \frac{\partial u}{\partial \vec{n}} d s$.

$>$ The dot indicates a dot product of two vectors.
$>\nabla=$ gradient operator.
In 2-D:

$$
\nabla u=\binom{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}},
$$

$>\Delta u=$ Laplacean of u
$>\vec{n}$ is the unit vector that is normal to Γ and directed outwards.

The resulting matrix has the following block structure:

$$
A=\frac{1}{h^{2}}\left[\begin{array}{ccc}
B & -I & \\
-I & B & -I \\
& -I & B
\end{array}\right] \rightarrow
$$

Case: 7×5 grid

With

$$
B=\left[\begin{array}{ccccc}
4 & -1 & & & \\
-1 & 4 & -1 & & \\
& -1 & 4 & -1 & \\
& & -1 & 4 & -1 \\
& & & -1 & 4
\end{array}\right]
$$

$$
\begin{array}{ll}
>\text { Frechet derivative: } & \frac{\partial u}{\partial \vec{v}}(x)=\lim _{h \rightarrow 0} \frac{u(x+h \vec{v})-u(x)}{h}
\end{array}
$$

> Green's formula generalizes the usual formula for integration by parts
> Define

$$
\begin{aligned}
a(u, v) & \equiv \int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}} \frac{\partial v}{\partial x_{2}}\right) d x \\
(f, v) & \equiv \int_{\Omega} f v d x
\end{aligned}
$$

> With Dirichlet BC, the integral on the boundary in Green's formula vanishes \rightarrow

$$
a(u, v)=-(\Delta u, v) .
$$

\qquad
$>$ Suppose we want to solve $-\Delta u=f$ in $\Omega+$ Dirichlet $B C$
$>$ Weak formulation of the original problem: select a subspace of reference V of L^{2} and then solve

$$
\text { Find } \quad u \in V \text { such that } \underbrace{a(u, v)}_{=-(\Delta u, v)}=(f, v), \quad \forall v \in V
$$

Finite Element method solves this weak problem...
> ... by discretization

2-13
Can define a (unique) 'hat' function ϕ_{j} in V_{h} associated with each x_{j} s.t.:
$\phi_{j}\left(x_{i}\right)=\delta_{i j}=\left\{\begin{array}{l}1 \text { if } x_{i}=x_{j} \\ 0 \text { if } x_{i} \neq x_{j}\end{array}\right.$.
$>$ Each function u of V_{h} can be expressed as

$$
\begin{equation*}
u(x)=\sum_{j=1}^{n} \xi_{j} \phi_{j}(x) . \tag{*}
\end{equation*}
$$

$>$ The original domain is approximated by the union Ω_{h} of m triangles K_{i}, Triangulation of Ω :

$$
\Omega_{h}=\bigcup_{i=1}^{m} K_{i} .
$$

> Some restrictions on angles, edges, etc..

$$
V_{h}=\left\{\phi \mid \phi_{\mid \Omega_{h}} \in \mathcal{C}^{0}, \quad \phi_{\mid \Gamma_{h}}=0, \phi_{\mid K_{j}} \text { linear } \forall j\right\}
$$

$>\mathcal{C}^{0}=$ set of continuous functions
$>\phi_{\mid X}==$ restriction of ϕ to the subset \boldsymbol{X}
$>$ Let $x_{j}, j=1, \ldots, n$, be the nodes of the triangulation
2.14

FEM approximation 三 Galerkin condition for functions in V_{h} :
Find $u \in V_{h}$ such that $a(u, v)=(f, v), \forall v \in V_{h}$
$>$ Express u in the basis $\left\{\phi_{j}\right\}$ (see *), then substitute above. Result:
$>$ Linear system $\quad \sum_{j=1}^{n} \alpha_{i j} \xi_{j}=\boldsymbol{\beta}_{i} \quad$ where: $\alpha_{i j}=a\left(\phi_{j}, \phi_{i}\right), \quad \beta_{i}=\left(f, \phi_{i}\right)$.

The above equations form a linear system of equations
> \boldsymbol{A} is Symmetric Positive DefiniteProve it

$>$ So: $a_{K}\left(\phi_{i}, \phi_{j}\right) \neq 0$ iff $i \in\{k, l, m\}$ and $j \in\{k, l, m\}$.

Small finite element mesh and pattern of the corresponding assembled matrix

2-18 \qquad
$>$ Can be computed using the element matrices $A_{K_{e}}$ - no need to assemble
$>$ The product $P_{e}^{T} x$ gathers x data associated with the e-element into a 3 -vector consistent with the ordering of the matrix $\boldsymbol{A}_{K_{e}}$.
> Advantage: some simplification in process
$>$ Disadvantage: cost (memory + computations).

Element matrices $\boldsymbol{A}^{[e]}, e=1, \ldots, 4$ for FEM mesh shown above
$>$ Each element contributes a 3×3 submatrix $\boldsymbol{A}^{[e]}$ (spread out)
$>$ Can also use the matrix in un-assembled form - To multiply a vector by \boldsymbol{A} for example

$$
y=A x=\sum_{e=1}^{n e l} A^{[e]} x=\sum_{e=1}^{n e l} P_{e} A_{K_{e}}\left(P_{e}^{T} x\right)
$$ we can do:

Resources: A few matlab scripts

> These (and others) will be posted in the matlab folder of class web-site
>> help fd3d
function $A=f d 3 d(n x, n y, n z, a l p x, a l p y, a l p z, d s h i f t)$
NOTE nx and ny must be $>1--\mathrm{nz}$ can be $==1$.
5- or 7-point block-Diffusion/conv. matrix. with
$>$ A stripped-down version is lap2D (nx,ny)
>> help mark
[A] = mark (m)
generates a Markov chain matrix for a random walk on a triangular grid. A is sparse of size $n=m *(m+1) / 2$
(233 Explore A few useful matlab functions

* kron
* gplot for ploting graphs
* reshape for going from say 1-D to 2-D or 3-D arrays

Write a script to generate a 9-point discretization of the Laplacean.

2-22

