## Sparse Triangular Systems

- Triangular systems
- Sparse triangular systems with dense right-hand sides
- Sparse triangular systems with sparse right-hand sides
- A sparse factorization based on sparse triangular solves


## Sparse Triangular linear systems: the problem

The Problem: $\boldsymbol{A}$ is an $n \times n$ matrix, and $b$ a vector of $\mathbb{R}^{n}$. Find $x$ such that:

$$
A x=b
$$

$>x$ is the unknown vector, $b$ the right-hand side, and $\boldsymbol{A}$ is the coefficient matrix
$>$ We consider the case when $\boldsymbol{A}$ is upper (or lower)triangular.

## Two cases:

1. $A$ sparse, $b$ dense vector [solve once or many times]

$\boldsymbol{A}$ sparse, $b$ sparse vector [solve once or many times]
5-2
Illustration for sparse case (Sparse $A$, dense $b$ )

Back-Substitution
Row versionOperation count?

$$
\begin{aligned}
& \text { For } \begin{array}{l}
i=n:-1: 1 \text { do: } \\
\quad t:=b_{i} \\
\quad \text { For } j=i+1: n \text { do } \\
\quad t:=t-a_{i j} x_{j} \\
\quad \text { End } \\
\quad x_{i}=t / a_{i i}
\end{array} \\
& \text { End }
\end{aligned}
$$


> This will use the CSR data structure
> Inner product of a sparse row with a dense column
Sparse BLAS: Sparse 'sdot'
5

```
Recall:
typedef struct SpaFmt {
| C-style CSR format - used internally
| for all matrices in CSR format
|-------------------------------------------------------*/
    int n;
    int *nzcount; /* length of each row */
    int **ja; /* to store column indices
    double **ma; /* to store nonzero entries */
} CsMat, *csptr;
> Can store rows of a matrix (CSR) or its columns (CSC)
\(>\) Assume that diagonal entry is stored in first location in inverted form.
> Result:
5-5 Davis: chap 3 - Triang
Column version
> Column version of back-subsitution:
\[
\begin{aligned}
& \text { For } j=n:-1: 1 \text { do: } \\
& \quad x_{j}=b_{j} / a_{j j} \\
& \quad \text { For } i=1: j-1 \text { do } \\
& \quad b_{i}:=b_{i}-x_{j} * a_{i j} \\
& \text { End } \\
& \text { End }
\end{aligned}
\]
Back-Substitution Column version
End
```Justify the above algorithm [Show that it does indeed give the solution]
\(\qquad\)

Illustration for sparse case (Sparse \(\boldsymbol{A}\), dense \(b\) )

> Uses the CSC format - (CsMat struct for columns of \(\boldsymbol{A}\) )
> Sparse BLAS : sparse 'saxpy'
```

> Assumes diagonal entry stored first in inverted form
void UsolC(csptr mata, double *b, double *x)
int i, k, *ki;
double *ma;
for (i=mata->n-1;, i>=0; i--) {
ja=U->ja[i];
ma = U->ma[i];
// Note: diag. entry avoided
for( j=1; j< U->nzcount[i]; j++ )
x[ja[j]] -= ma[j] * x[i];
}
}

```Operation count?

5-9

Sparse \(A\) and sparse b

\section*{Illustration: Consider solving \(L x=b\) in the situation:}


Show progress of the pattern of \(x=L^{-1} b\) by performing symbolically a column solve for system \(L x=b\).Show how this pattern can be determined with Topological sorting. Generalize to any sparse \(b\).

5-10
\[
-10
\]

Consider a triangular system with the following graph where \(b\) has nonzero entries in positions 3 and 7. (1) Progress of solution based on Topolog. sort; (2) Pattern of solution. (3) Verify pattern with matlab.
Same questions if \(b\) has (only) a nonzero entry in position 1.In many cases, this leads to a short traversalExample: remove link \(1 \rightarrow 2\) and redo


Root: node 1 (see right-hand side \(b\) )Topological sort: 1, 3, 5, 2, 6, 4 [as produced by a DFS from 1]

\section*{LU factorization from sparse triangular solves}
> LU factorization built one column at a time. At step \(k\) :

\[
\left[\begin{array}{ccc|c|ccc}
1 & & & & & & \\
* & 1 & & & & & \\
* & * & 1 & & & & \\
* & * & * & 1 & & & \\
* & * & * & ? & 1 & & \\
* & * & * & ? & & 1 & \\
* & * & * & ? & & & 1
\end{array}\right] \quad\left[\begin{array}{lll|l}
x & x & x & ? \\
& x & x & ? \\
& & x & \cdot \\
& & & ? \\
& & & 0 \\
& & & 0 \\
& & & 0
\end{array}\right]=A_{k}
\]

In blue: has been determined. In red: to be determined
\(>\) Step 0: Set the terms ? in \(L_{k}\) to zero. Result \(\equiv \tilde{L}_{k}\)
\(>\) Step 1:Solve \(\tilde{L}_{k} \boldsymbol{w}=a_{k}\) [Sparse \(\tilde{L}_{k}\), sparse RHS]
> Step 2: set
\[
u=\left|\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{k} \\
\hline 0 \\
\vdots \\
0 \\
0
\end{array}\right| \quad z=\frac{1}{w_{k}}\left|\begin{array}{c}
0 \\
\vdots \\
w_{k+1} \\
\boldsymbol{w}^{2} \\
w_{k+2} \\
\vdots \\
w_{n}
\end{array}\right|
\]
\(>\) Then \(L_{k} U_{k}=A_{k}\) with

5-14
Key step: solve triangular system
> In sparse case: sparse triangular system with sparse right-hand side
> Use topological sorting at each step
> Scheme derived from this known as 'left-looking' sparse LU -
> Also known as 'Gilbert and Peierls' approach
> Reference: J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874Benefit of this approach: Partial pivoting is easy. Show how you would do it.
\[
L_{k} u=\left(\tilde{L}_{k}+z e_{k}^{T}\right) u=\tilde{L}_{k}\left(I+z e_{k}^{T}\right) u=\tilde{L}_{k}\left(u+w_{k} z\right)=\tilde{L}_{k} w=a_{k}
\]```

