Computer Science 4271

Spring 2023

Midterm exam 1 (solutions)

February 21st, 2023

Time Limit: 75 minutes, 11:15am-12:30pm

e Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this

page.

e This exam contains 7 pages (including this cover page) and 4 questions. Once we tell you to
start, please check that no pages are missing.

e You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

e You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

e Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

e By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 12:30pm. Good luck!

Your name (print):

Your UMN email /X.500: Qumn.edu

Number of rows ahead of you: _____ Number of seats to your left, to an aisle:

Sign and date:

Question | Points | Score

1 30
2 16
3 26
4 28

Total: 100

Computer Science 4271 Midterm exam 1 (solutions) - Page 2 of 7

1. (30 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) —O__ Intel’s name for a bit implementing W & X

(b) —_C_ Roughly a synonym of W & X

(¢) —_A__ Choosing a random base address for memory regions
(d) ——F__ A technical change to decrease the possibility of attack
(e) __H__ A safe place to store return addresses

(f) I Falsifying your identity in communication

(g) ——J__ A C library routine that executes a shell command

(h) —_D__ An amount of randomness measured in bits

(i) ——M__ Represented with a dashed rectangle

(j) ——G_ A code reuse attack using complete functions

(k) —_K__ Modifying information that should be protected

(1) __B__ Property of information protected from disclosure
(m) —_E__ A Unix system call to switch to a new program

(n) _N__ A Windows system call to change memory permissions

(o) ——L__ A value that can’t be copied because it signifies the end

A. ASLR B. confidentiality C. DEP D. entropy E. execve F. mitiga-
tion G. return-to-libc ~ H. shadow stack I. spoofing J. system K. tampering
L. terminator canary M. trust boundary N. VirtualProtect O. XD

Page 2

Computer Science 4271 Midterm exam 1 (solutions) - Page 3 of 7

2. (16 points) Stack buffer overflow, in source code.

The two C functions srcl and src2 both implement similar functionality, but the different
order in which they do certain operations has a significant effect. Assume that the argument s
to both functions is non-null, but could point to any characters. One of the functions is safe,
in the sense that it will never invoke undefined behavior. But the other function is unsafe: for
some inputs, it will invoke undefined behavior. Depending on how it is compiled, this means
it could crash or allow an attack.

The functions use subroutines named strlen_nl and strcpy_nl, which are similar to the
standard library functions with similar names, but use a newline character (’\n’, hex 0x0a)
as a terminator instead of a null character.

size_t strlen_nl(const char *s) {

int

char *strcpy_nl(char *dst, const char *src){
char *p = dst; const char *q = src;
while (*q !'= ’\n’) { *p++ = xq++; }
*pt+t = ’\n’;
return dst;

size_t count = O;
while (*s '= ’\n’) {count++; s++;}
return count;

}
srcl(char *s) { int src2(char *s) {
char buf[16]; char buf[16];
size_t len; size_t len;
len = strlen_nl(s); len = strlen_nl(s);
if (len >= 16) { strcpy_nl(buf, s);
puts("Input too long!"); if (len >= 16) {
exit(1); puts("Input too long!");
} exit(1);
strcpy_nl(buf, s); }
return buf[0]; return buf [0];
}

The buffer buf can hold 16 characters. Why is it nonetheless a good idea that the code
that checks for the input string being too long uses the condition len > 16 (equivalent to
len > 15), rather than len > 167

Like its non-nl namesake, strlennl does not count the terminating character (here a
newline) as part of the length. But the terminating character will be written to the buffer
by strcpy-nl. So it would be unsafe to call strcpynl when the length is 16: it would
overflow the buffer by one byte.

Between srcil and src2, which one is safe and which one is unsafe? Briefly explain why.

The difference between the functions is the relative ordering of the length check and the
call to strcpynl: in srcl the check comes before the copy, and in src2 the copy comes
first. Intuitively, you also want to check the safety of an operation before you perform it: if
you find out that an operation was unsafe after you performed it, something bad may have
already happened. According to the rules of C in particular, overflowing a buffer leads to
undefined behavior, so it is not safe to assume anything about the behavior of src2 after
the strcpynl call. Only srcl is safe.

Page 3

Computer Science 4271 Midterm exam 1 (solutions) - Page 4 of 7

3. (26 points) Stack buffer overflow, in machine code.

Below are four function definitions in Linux/x86-64 assembly code, compiled from srci1 and
src2 from the previous question. Two of the compilations come from each of the two source
functions, but with different compiler options; the labels A through D were assigned randomly.
The code that handles the error case is always the same, so we’ve separated it out with the
label error_handler. Only one of these four versions is vulnerable to a stack buffer overflow
attack overwriting its return address.

A: push Yrbx
sub $0x10,%rsp
mov %rdi, %rbx
call strlen_nl
cmpq $0xf,%rax

ja error_handler
mov %hrsp,hrdi
mov %rbx,%rsi

call strcpy_nl
movsbl (%rsp),%eax
add $0x10,%rsp
pop %rbx

ret

C: push Y%rbp
mov %rsp,hrbp
sub $0x30, %rsp
mov %rdi,-0x28 (%rbp)
mov -0x28 (%rbp) , %rax
mov %rax,%rdi
call strlen_nl
mov %rax,-0x8 (%rbp)
cmpq $0xf,-0x8 (%rbp)

ja error_handler
mov -0x28 (%rbp) , %rdx
lea -0x20 (%rbp) , %rax
mov Y%rdx,%rsi

mov Y%rax,%rdi

call strcpy_nl

movzbl -0x20(%rbp) ,%eax

movsbl %al,%eax

mov %rbp,fkrsp

pop Urbp

ret
message:

.string "Input too long!"
error_handler:

mov $message, %rdi

call puts

mov $0x1,%edi

call exit

push
push
sub
mov
call
mov
mov
mov
call
cmpq
ja
movsbl
add
pop
pop
ret

push
mov
sub
mov
mov
mov
call
mov
mov
lea
mov
mov
call
cmpq
ja
movzbl
movsbl
mov
pop
ret

%rbp

%rbx
$0x18,%rsp
%rdi,%rbx
strlen_nl
%rax,jrbp
%rsp,hrdi
%rbx,f%rsi
strcpy_nl
$0xf, %rbp
error_handler
(%rsp) ,heax

$0x18,%rsp
%rbx
%rbp
%rbp
%rsp,hrbp
$0x30, %rsp

%rdi,-0x28 (%rbp)
-0x28 (%rbp) , %rax
Yorax,frdi
strlen_nl
%rax,-0x8(%rbp)
-0x28 (%rbp) , %rdx
-0x20 (%rbp) , %rax
Y%rdx,%rsi
Yrax,frdi
strcpy_nl

$0xf ,-0x8 (%rbp)
error_handler
-0x20 (%rbp) , %eax
%al,%heax

%rbp, hrsp

%rbp

Computer Science 4271 Midterm exam 1 (solutions) - Page 5 of 7

Here is an example of an input, in the format of a C string, that would overwrite the return
address of the function with the value 0x4012e2 if it is given as the argument to the vulnerable
version:

"AAAAAAAABBBBBBBBxxxxxxxx\x01\0\0\0\0O\O\O\Oyyyyyyyy\xe2\x12\x40\0\0\0\0\0\n"
(a) Write the letters of the two versions compiled from srci: __A__ _C_

(b) Write the letters of the two versions compiled from src2: __B__ _D__

(c) For each of the versions, which location(s) hold the value of the variable len? For each
version, write one or more locations, where each location is either a register (e.g., %ircx), or
a stack location indicated as an offset from the location a register points to (e.g., 42 (%rcx)
represents the location 42 bytes beyond where the register %rcx points).

A: Yrax B: Jrbp
C: -8(%rbp) D: -8(%rbp)
(d) Write the letter of the version that is vulnerable: _D__

(e) Briefly explain why this and only this version is vulnerable

In version D only, the buffer overflow in strcpy-nl can change the value of len in a way
that will keep the length-check branch from working correctly. A and B are safe from the
attack because they store the length in a register, which can never be affected by a buffer
overflow. C is safe because the length check comes before the copy. But in D, the overflow
can change the stack location holding len to a small value that will pass the length check
(1 in the sample attack), even after copying too many bytes and overwriting the return
address.

Here are some reminders about Linux/x86-64 assembly language. We use “AT&T” syntax,
which means that the operand that is modified in an instruction always comes last, even
though that means that subtraction (sub) and comparison are backwards from normal math.
The cmp instruction compares two values, and the suffix q indicates that it operates on 64-bit
values. The conditional jump instruction ja transfers control to operand label if the result
of a previous comparison was greater-than (“above”) according to unsigned arithmetic. The
instruction lea computes an address or other numeric value using addressing-mode operations.
The mov instruction copies data from its first operand to its second; the sbl and zbl variants
expand from an 8-bit source to a 32-bit destination with sign extension or zero-extension
respectively. push allocates 8 bytes by decreasing the stack pointer %rsp and copies a value
the stack, while pop copies a value from the stack and increments the stack pointer by 8 bytes.
The first two arguments to a function are passed in registers %rdi and %rsi, and a return value
is in the register jrax. The function exit terminates the program.

Page 5

Computer Science 4271 Midterm exam 1 (solutions) - Page 6 of 7

4. (28 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a)

All of the following printf format specifiers might sometimes produce only a single byte
of output, except:

A.%1d B. % C.%s D.%d E. %1004

he always produces a single character (byte) of output. %1d and %d can both do so if
their argument is between 0 and 9. %s can produce a single byte of output if its argument
string is one byte long before the null terminator. But %100d will always print 100 bytes
of output, because it will pad its integer output with spaces. (When int is 32 bits as it now
usually s, the integer itself could only take up to 11 characters in signed decimal, such as
in -2147483648.)

If x is a 32-bit signed integer (like an int), all of the following operations could overflow,
except:
A.x-1 B.x/2 Cx+1 D x*x2 E x+x+x

Adding any positive value, or multiplying by 2 or 8, could all overflow when their result
would be greater than or equal to 23'. Subtracting a positive value can overflow when its
result is less than —23'. But dividing a number by two always decreases its absolute value
(or leaves it at 0), so it can’t overflow.

Suppose that an array field within a struct allocated with malloc can be overflowed via
strcpy. All of the following might be overwritten except:

an integer field later in the structure

a return address

a pointer field in a different heap-allocated object

heap metadata for the allocation containing the overflow

moaW

metadata for another heap allocation

Return addresses are always stored on the stack, whereas objects allocated with malloc
are stored on the heap. The stack and the heap are separate memory regions with a large
un-allocated gap between them, so a sequential overflow could never overwrite from the
heap to the stack. But all the other answers are things stored on the heap which might be
overwritten.

Addresses on x86-64 are stored in 64 bits, but current systems don’t use all 64. In one
common configuration, the top 17 bits of an address are required to all be the same, and
if these bits are all 1, the address is reserved for the OS kernel. Also, pages are 4096 bytes
long, and keeping memory regions page-aligned is important for performance. If these
were the only relevant restrictions, the number of locations that could be chosen for one
user-space memory region in ASLR is:

A. 212 B 220 (C. 2% D, 2% E. 2%

An equivalent way of stating the restrictions is that the a location used as the starting
address of a memory region needs to have its top 17 bits and low 12 bits all zero. This
leaves 64 — 17 — 12 = 35 bits in between that can be either 0 or 1 in any combination.

Page 6

Computer Science 4271 Midterm exam 1 (solutions) - Page 7 of 7

()

Arguably one of the most important features of pen-and-ink signatures in the physical
world is that you can confront someone later with a document they have signed, and it is
hard for them to deny having signed it. In our terminology, the property being provided
here is:

A. integrity B. non-repudiation C. availability = D. confidentiality E. invari-
ance

Suppose your company is considering switching to two-factor authentication (similar to
UMN’s use of Duo) with a service provided by an outside company named AuthCorp, and
your considering threats that might arise from AuthCorp. When logging in, your users
will both provide a password checked on your company’s service, and be authenticated via
AuthCorp’s app. Both the password and using the app are required, so even if AuthCorp is
malicious, as long as they don’t know users’ other passwords, this threat class is mitigated:
A. spoofing B. tampering C. repudiation D. information disclosure E. denial
of service

On the other hand, because AuthCorp’s service must be working correctly for users to log
in, AuthCorp might still be a source of this threat class:

A. spoofing B. tampering C. repudiation D. denial of service E. escalation
of privilege

For instance, a malicious AuthCorp could reject all login attempts.

Page 7

