
Computer Science 4271
Spring 2022
Midterm exam 2 (solutions)
April 19th, 2022
Time Limit: 75 minutes, 9:45am-11:00am

� Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

� This exam contains 8 pages (including this cover page) and 4 questions. Once we tell you to
start, please check that no pages are missing.

� You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

� You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

� Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

� By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 11:00am. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 20

2 22

3 28

4 30

Total: 100

Computer Science 4271 Midterm exam 2 (solutions) - Page 2 of 8

1. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) H the structure used in DES

(b) G given y, compute x such that gx = y

(c) F accessing unintended file system locations with ..

(d) K a mode of operation that can be used like a stream cipher

(e) Q an algorithm that would be insecure if factoring were easy

(f) P the standard name for UID 0

(g) J a virtual machine implemented underneath a normal kernel

(h) T another name for JavaScript injection

(i) I any pair x, y with x 6= y such that h(x) = h(y)

(j) B Unix system call for changing file permissions

(k) D a security policy that forbids information disclosure

(l) M subject for access control in web browsers

(m) N given y, compute an x such that h(x) = y

(n) C Unix system call for filesystem isolation

(o) O idealized functionality equivalent to a random function

(p) S a logical statement that is always true

(q) A for an object, records allowed subjects and operations

(r) R reading plaintext data from a network

(s) E used to implement sessions for web applications

(t) L truly random bits used as a keystream

A. ACL B. chmod C. chroot D. confidentiality E. cookie F. directory traversal
G. discrete log H. Feistel cipher I. free collision J. hypervisor K. OFB L. one-
time pad M. origin N. preimage attack O. random oracle P. root Q. RSA
R. sniffing S. tautology T. XSS

Page 2

Computer Science 4271 Midterm exam 2 (solutions) - Page 3 of 8

2. (22 points) Another kind of injection attacks.

Technologie pour Bateaux Rouen SARL (Technology for Boats) is a small business in northern
France that specializes in control and management software for autonomous watercraft in the
logistics industry, and they have brought you in as a security consultant. Their best-selling
product has a web interface written in PHP providing commands to back-end software written
using a proprietary interpreted programming language named Boating Oxide. You need to
break the bad news to them that the way they have implemented this architecture is vulnerable
to code injection, by building example attacks.

Boating Oxide’s name (also Oxide or BoatOx for short) is reminiscent of Rust, but the languages
are not very similar. Oxide supports integer literals, arithmetic and logical operations, and
control flow using similar syntax as C, and statements are terminated with a semicolon (;),
but much of the other syntax is different. Comments start with a # and continue to the end
of the line, as in Perl and the Unix shell. Strings are enclosed with the character sequences

<< at the start and >> at the end (modeled on the quotation marks � and � used in French),

and can be compared with the operator ==. As in PHP, Perl, and the Unix shell, variable
names can appear inside strings, where their values are substituted. However unlike PHP,
Perl, and the Unix shell, which use a dollar sign ($) before variable names, Oxide uses a Euro
symbol C= . For instance in Oxide if C= name contains Bob, then <<Hello, C= name>> is the same
as <<Hello, Bob>>, just like how "Hello, $name" works in PHP.

The PHP command oxide takes a string as an argument, and evaluates it as a Boating Oxide
command. The Oxide command self_destruct() would cause a boat to blow itself up with
explosives, and should only be used in a severe emergency.

(a) The following line of PHP appears to initialize an Oxide string variable based on a similarly
named PHP variable:

oxide("C= location_ox = <<$location_php>>;");

The code works correctly for many values of the PHP variable $location_php, but if the
variable is supplied from an untrusted web interface with no sanitization, other Oxide code
could be executed. For instance, give a value for $location_php that would cause the
boat to self destruct:

This is the same pattern of an injection attack “getting out of” a string that we’ve seen in
the shell, in XSS, and in SQL injection. The injected string should contain a delimiter to
close the string it was intended to be part of, then supply other functionality. To keep the
syntax correct, the injection should end either by re-staring another string with an opening
string delimiter to match what comes after the injection, or cause the rest of what comes
next to be ignored such as by turning it into a comment. Two example attacks:

x>>; self_destruct(); C= location_ox = <<x

>>; self_destruct(); #

Page 3

Computer Science 4271 Midterm exam 2 (solutions) - Page 4 of 8

(b) The following PHP code tries to create an Oxide loop to print the destination of the
package named in the PHP variable $pkg:

oxide("for (C= p in packages()) { if (C= p == <<$pkg>>) print(get_dest(C= p));}");

As in the previous part, suppose that $pkg is supplied from an untrusted web interface with
no sanitization. Give a value for $pkg that would cause the destinations of all packages
to be printed:

This attack situation might remind you of the common use of tautologies in SQL injection:
the goal of the injection is to turn a restrictive condition into a condition that is always
true. An approach that is very similar to how you might do it in SQL is to create a
tautological comparison between string literals and combine it with a logical or, which here
should be || because the question says that the logical operations are like the ones in C:

>> || <<x>> == <<x

Here’s another way to make a tautology that uses Oxide’s string interpolation feature:

C= p

Page 4

Computer Science 4271 Midterm exam 2 (solutions) - Page 5 of 8

3. (28 points) ECB cryptanalysis.

The following 5 24-byte messages, shown in hexadecimal, have been encrypted with an unknown
block cipher:

(a) 989caa4c9a84aa9aaabe9a3859aa9aa8beaa849ccb3895f8

(b) a09fae3d094f9fae3d09279fae3d09225ba03d099f5b9f3d

(c) 42257890e89d628298690021db15fc557a41c226ee92f103

(d) 98aa9b9a95f2ceaa98aa849a4cceaa98aa9bcba8493839be

(e) 4c9ac69ce7e7e74c9ac69ce7e7e74c9ac69ce7e7e727c69c

Luckily for you as a cryptanalyst, you know that the block cipher made some design choices that
are bad for its security: the block size is only 1 byte (8 bits), the cipher is used in ECB mode,
and the same key was used for all the messages. Also, through the work of your colleagues in
human intelligence, your agency has been able to determine that the messages correspond to
the following 5 plaintexts, in some order:

1. ABCDEFGHIJKLMNOPQRSTUVWX

2. 8271>5271>4271>3081>2021

3. It was a dark and stormy

4. wait...wait...wait...4it

5. I came, I saw, I conqr’d

Due to an unexpected power outage, you’ve been tasked with determining which message is
which, just using pencil and paper. A colleague who has done this kind of cryptanalysis before
suggests that you proceed by trying to figure out the encryptions of certain common byte values
in the messages. To make it easier to see what’s going on, we’ve copied the plaintexts, their
correspond hex values, and the ciphertexts into a table to line them up. We’ve used the symbol

to represent a space, which would otherwise be invisible. For your convenience, the table is
shown together with the spaces for your answers on the next page. Remember, you don’t have
to do parts (a)–(e) before part (f): you may find it helpful to go back and forth.

The existence of part (f) was intended as a hint: it should of course have be straightforward to
fill in if you had figured out the matching between plaintexts and ciphertexts, but the particular
characters it asks about are ones that would be good to look at for figuring out the matching.

The key property of ECB-mode encryption that makes this question possible is that equal plain-
text bytes will always encrypt to equal ciphertext bytes, wherever they appear. So matching
cyphertext blocks within messages or between messages are hints about which is which. Plain-
text I is significant because it appears as the first letter of both messages 3 and 5, while the
three other first characters are unique. If you look at the 5 first ciphertext bytes, two of them
are 0x98 and the other three are different, so (a) and (d) have to be 3 and 5 in some order,
and 0x98 must be the encryption of I. Plaintext spaces appear several times in both 3 and 5,
but in different positions: for instance 5 has a space as the second character and 3 has a space
as the third character. If you compare the second and third bytes of (a) and (d), 0xaa appears
as the second byte in (d), the third byte in (a), and then many more times in each, whereas
the second byte of (a) does not match the third byte of (d), so 0xaa must be the encryption of
space. Plaintext 4 has three distinctive sets of consecutive periods representing ellipses, and the
only one of the ciphertexts that has a similar pattern is (e) with three sets of three 0xe7 bytes

Page 5

Computer Science 4271 Midterm exam 2 (solutions) - Page 6 of 8

in the same positions. Thus ciphertext (e) goes with plaintext 4, and the encryption of period
is 0xe7. Somewhat similarly plaintext 2 has a lot of repetitions of the digit 1 followed by the
greater-than sign, and you can see a matching pattern in ciphertext (b) of 0x3d and 0x09.

1. A B C D E F G H I J K L M N O P Q R S T U V W X

2. 8 2 7 1 > 5 2 7 1 > 4 2 7 1 > 3 0 8 1 > 2 0 2 1

3. I t w a s a d a r k a n d s t o r m y

4. w a i t . . . w a i t . . . w a i t . . . 4 i t

5. I c a m e , I s a w , I c o n q r ’ d

1H. 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58

2H. 38 32 37 31 3e 35 32 37 31 3e 34 32 37 31 3e 33 30 38 31 3e 32 30 32 31

3H. 49 74 20 77 61 73 20 61 20 64 61 72 6b 20 61 6e 64 20 73 74 6f 72 6d 79

4H. 77 61 69 74 2e 2e 2e 77 61 69 74 2e 2e 2e 77 61 69 74 2e 2e 2e 34 69 74

5H. 49 20 63 61 6d 65 2c 20 49 20 73 61 77 2c 20 49 20 63 6f 6e 71 72 27 64

(a) 98 9c aa 4c 9a 84 aa 9a aa be 9a 38 59 aa 9a a8 be aa 84 9c cb 38 95 f8

(b) a0 9f ae 3d 09 4f 9f ae 3d 09 27 9f ae 3d 09 22 5b a0 3d 09 9f 5b 9f 3d

(c) 42 25 78 90 e8 9d 62 82 98 69 00 21 db 15 fc 55 7a 41 c2 26 ee 92 f1 03

(d) 98 aa 9b 9a 95 f2 ce aa 98 aa 84 9a 4c ce aa 98 aa 9b cb a8 49 38 39 be

(e) 4c 9a c6 9c e7 e7 e7 4c 9a c6 9c e7 e7 e7 4c 9a c6 9c e7 e7 e7 27 c6 9c

Fill in the plaintext number corresponding to each ciphertext:

(a) 3

(b) 2

(c) 1

(d) 5

(e) 4

(f) Fill in common byte values:

Plaintext char Plaintext hex Ciphertext hex

I 0x49 0x98

0x20 0xaa

. 0x2e 0xe7

1 0x31 0x3d

Page 6

Computer Science 4271 Midterm exam 2 (solutions) - Page 7 of 8

4. (30 points) A race condition attack.

The following C pseudo-code attempts to write a line of text to the end of a log file stored in
the /tmp directory. However, you may be able to see that is has TOCTTOU/race condition
problems.

char *log_fname = "/tmp/logfile";

void write_log_msg(char *msg) {

/* point A */

if (!file_exists(log_fname))

create_log_file(log_fname);

/* point B */

if (!is_regular_file(log_fname))

print_error_and_exit();

/* point C */

FILE *fh = fopen(log_fname, "a");

if (!fh) print_error_and_exit();

fputs(msg, fh);

fclose(fh);

}

Suppose that the program containing this code is running with superuser privileges, and
your goal as an attacker is to cause it to write the message to the system configuration file
/etc/passwd instead of to the normal log file. Assume that before this function starts ex-
ecuting, no file named /tmp/logfile exists. But you as the attacker are able to run other
programs, with write access to /tmp, at the same time this code is running. In particular, to
achieve your attack, you will try to get certain operations to occur in between the vulnerable
program’s operations, namely at the points marked point A, point B, and/or point C.

In the parts below, describe what racing attacker actions should take places at each point for a
successful attack (the next page has more explanation of the code). You may not need to use
all three points.

(a) At point A:

Create /tmp/logfile as a regular file owned by the attacker

(b) At point B:

No action needed here

(c) At point C:

Replace /tmp/logfile with a symbolic link pointing at /etc/passwd

Page 7

Computer Science 4271 Midterm exam 2 (solutions) - Page 8 of 8

Assume that the function file_exists returns true if a file exists with a given pathname,
and false otherwise. Assume that the function is_regular_file returns true if its pathname
argument is a regular file with only one link, and false if it is a directory, a symbolic link,
a hard link, or does not exist. Assume that the function create_log_file creates a file
with the given name and appropriate permissions for a log file. Assume that the function
print_error_and_exit prints an error message and then causes the program to exit.

The functions fopen, fputs, and fclose are from the standard library. The function fopen

opens a file, and a second argument of "a" causes it to write to the end of the file (append). It
returns a null pointer if the open fails. The functions fputs and fclose write a string to a file
and close the file respectively. We have omitted error handling for fputs and fclose because
it is not relevant to the attack.

A common pattern in attacks against TOCTTOU vulnerabilities is for the attacker to change
the state of a shared object after the victim does a check, but before the victim does an action
in seeming reliance on the check, in a way that changes the behavior of the relying operation.
If the attacker could create a vulnerable state by setting up entirely before the victim runs, it
could be a vulnerability, but it wouldn’t be a TOCTTOU vulnerability. And if the author of
the vulnerable code had part of the right idea, it’s likely they put in security checks to try to
keep the later operation from doing something bad. This code has two file-system operations that
look like checks, in the functions file_exists and is_regular_file, and two relevant-looking
operations, creating the file with create_log_file and writing to the file with fopen, fputs,
and fclose.

Another important thing to keep in mind is that this question is talking about an OS-level attack
that comes from an attacker running a separate process, not doing anything like exploiting
memory safety vulnerabilities in this code. The variable log_fname is a shorthand but the
attacker can’t do anything to change the value of that variable, so all of the victim operations
will be asking the OS to do operations related to /tmp/logfile.

The question doesn’t give us a point in between checking whether the file exists and creating
it, so it doesn’t look like there’s a TOCCTOU attack there. The point that falls in between a
check and a use is point C, which lies in between checking that the file is a regular file on one
hand, and opening and writing to it on the other. Since the check is checking that /tmp/logfile
should be a regular file, you can guess that the attack is based on /tmp/logfile being something
other than a regular file. We’re also told that the attacker’s goal is to write to /etc/passwd, a
file that the attacker doesn’t normally have permissions to write to, but that this program does.
Wanting to make a write to one filename have the effect of a write to a different file should
make you think of links. And in fact, either a symbolic link or a hard link to /etc/passwd

would have the attacker-desired effect. This explains the action at point C.

Are either of the previous points relevant to the attack? This is the more subtle part of the
question, but the attacker needs to do something beyond creating the link at step C for the
attack to work. The problem for the attacker is that the rules for files in /tmp mean that if the
log file is created by the victim program, the attacker will not be able to replace the log file later:
files in /tmp can only be replaced by their owners. In order to be able to replace the file later,
the attacker needs to preempt the victim program from creating the file by the attacker creating
the log file themselves (and owned by them). This other preparatory step isn’t a race, because
the attacker could do it well in advance, but to be effective it has to come before the victim code
creating the log file, so among the provided choices, it has to happen at point A.

Page 8

