
CSci 4271W
Development of Secure Software Systems
Day 9: Auditing, more countermeasures

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

ROP exercise debrief

Advice on code auditing

Announcements intermission

ASLR and counterattacks

Return address protections

Setup

Key motivation for ROP is to disable W � X

Can be done with a single syscall, similar to execve

shellcode

Your exercise: put together such shellcode from a
limited gadget set

Puzzle/planning aspect: order to avoid overwriting

Outline

ROP exercise debrief

Advice on code auditing

Announcements intermission

ASLR and counterattacks

Return address protections

Main source for this advice

Chapter 4 of The Art of Software Security
Assessment, by Mark Dowd, John McDonald, and
Justin Schuh

The reading has more explanations and details

Course-only chapter copy on the Canvas page

They call this topic “application review”

The context of auditing

Any process should be result-driven

Plan the scope of what you’re going to do before
diving in

Be prepared to spend time afterwards explaining
your result, and maybe helping fix the problems

Structure based on design info

The structure of the process depends on reliable
design information

E.g., from threat modeling

If you have it, top-down is most efficient

Bottom-up helps you learn the design, but is slower

A hybrid is also possible

Planning and iteration

Choose goals and scope (e.g., based on business
context)
Budget enough time

100 to 1,000 LOC/hr for a professional

Work for a while with one goal/strategy, periodically
reassess and maybe change



Notes and collaboration

Several reasons to keep notes as you go:
“Ideas list” of leads to explore later
Preparing to produce documentation as an end product

Ease of coordination depends on software
modularity

For Project 0.5, could be independent or
pair-programming

Tracing code and data flow

Control-flow tracing: what calls what, under what
circumstances?

Data-flow tracing: how does information go from one
place to another?

Can be forward: from an entry point

Or backwards from a candidate point
E.g., risky operation

Or not tracing

Often, following long flows and remembering a deep
context won’t be the best use of your time

Aim to mostly be looking at one function at a time

Three kinds of strategies

How can you organize your auditing work?

Based on code comprehension

Based on candidate points

Based on design generalization

Code comprehension strategies

CC1: Trace malicious input

CC2: Analyze a module

CC3: Analyze an algorithm

CC4: Analyze a class or object

CC5: Trace black box hits

Candidate point strategies

CP1: General candidate point approach

CP2: Automated source analysis tool

CP3: Simple lexical candidate points

CP4: Simple binary candidate points

CP5: Black-box-generated candidate points

CP6: Application-specific candidate points

Design generalization strategies

DG1: Model the system

DG2: Hypothesis testing

DG3: Deriving purpose and function

DG4: Design conformity check

Testing and desk-checking

Testing can be used to confirm or disprove a theory
Sometimes you can test all the code at once
Other times, isolate a smaller code unit to test, maybe
with a debugger

A desk-check is manually walking through a test
case on a piece of code

Construct a table of values over time
Can be valuable because it makes you slow down



Constraints and data operations

When testing with numeric data, think about the
constraints on what values are possible

These may come from other places in the code

For richer data types like strings, design your tests
based on how the values are processed

E.g., transformation, validation, parsing, system usage

Outline

ROP exercise debrief

Advice on code auditing

Announcements intermission

ASLR and counterattacks

Return address protections

Midterm next Tuesday

The first midterm exam will be next Tuesday (2/20)
in class

Open book, open notes, no electronics
You will have the whole class period
Topics will be memory safety bugs and attacks, and
threat modeling
Similar concepts, but less depth, than labs and p-set
Samples of past midterms on the schedule page

Outline

ROP exercise debrief

Advice on code auditing

Announcements intermission

ASLR and counterattacks

Return address protections

Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly so attackers
can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory location

E.g., on x86-64:
Direct jumps are relative
Function pointers are absolute
Data can be relative (%rip-based addressing)

Relocation (Windows)

Extension of technique already used in compilation

Keep table of absolute addresses, instructions on
how to update

Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code / Executable”

Keep code unchanged, use register to point to data
area

Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)



What’s not covered

Main executable (Linux PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area

Entropy limitations

Intuitively, entropy measures amount of randomness,
in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most 32- 12 = 20 bits of
entropy on x86-32

Other constraints further reduce possibilities

Leakage limitations

If an attacker learns the randomized base address,
can reconstruct other locations

Any stack address ! stack unprotected, etc.

Outline

ROP exercise debrief

Advice on code auditing

Announcements intermission

ASLR and counterattacks

Return address protections

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

Value hard to reproduce because it would tell the
copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed



XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?

What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86-64: %fs:0x28

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection


