CSci 427\W
Development of Secure Software Systems
Day 9: Auditing, more countermeasures

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

ROP exercise debrief

Setup

©) Key motivation for ROP is to disable W & X

©) Can be done with a single syscall, similar to execve
shellcode

©) Your exercise: put together such shellcode from a
limited gadget set
£) Puzzle/planning aspect: order to avoid overwriting

Outline

Advice on code auditing

Main source for this advice

) Chapter 4 of The Art of Software Security
Assessment, by Mark Dowd, John McDonald, and
Justin Schuh

©) The reading has more explanations and details
) Course-only chapter copy on the Canvas page
©) They call this topic “application review”

The context of auditing

£) Any process should be result-driven

£) Plan the scope of what you're going to do before
diving in

©) Be prepared to spend time afterwards explaining
your result, and maybe helping fix the problems

Structure based on design info

£) The structure of the process depends on reliable
design information
® Eg, from threat modeling

o) If you have it, top-down is most efficient
£) Bottom-up helps you learn the design, but is slower
©) A hybrid is also possible

Planning and iteration

£) Choose goals and scope (e.g., based on business
context)
£) Budget enough time
® 100 to 1,000 LOC/hr for a professional
£) Work for a while with one goal/strateqy, periodically
reassess and maybe change




Notes and collaboration

£) Several reasons to keep notes as you go:
® “ldeas list” of leads to explore later
® Preparing to produce documentation as an end product
) Ease of coordination depends on software
modularity

® For Project 0.5, could be independent or
pair-programming

Tracing code and data flow

£) Control-flow tracing: what calls what, under what
circumstances?

£) Data-flow tracing: how does information go from one
place to another?

£) Can be forward: from an entry point

©) Or backwards from a candidate point
® Eg, risky operation

Or not tracing

) Often, following long flows and remembering a deep
context won't be the best use of your time

©) Aim to mostly be looking at one function at a time

Three kinds of strategies

£) How can you organize your auditing work?
£) Based on code comprehension

£) Based on candidate points

£) Based on design generalization

Code comprehension strategies

©) CCI: Trace malicious input

£) CC2: Analyze a module

£) CC3: Analyze an algorithm

£) CC4: Analyze a class or object
£) CC5: Trace black box hits

Candidate point strategies

£) CP1: General candidate point approach

£) CP2: Automated source analysis tool

£) CP3: Simple lexical candidate points

£) CP4: Simple binary candidate points

£) CP5: Black-box-generated candidate points
£) CP6: Application-specific candidate points

Design generalization strategies

£) DGI: Model the system

©) DG2: Hypothesis testing

£) DG3: Deriving purpose and function
£) DG4: Design conformity check

Testing and desk-checking

£) Testing can be used to confirm or disprove a theory
® Sometimes you can test all the code at once
® Other times, isolate a smaller code unit to test, maybe
with a debugger
©) A desk-check is manually walking through a test
case on a piece of code
® Construct a table of values over time
® Can be valuable because it makes you slow down




Constraints and data operations

£) When testing with numeric data, think about the
constraints on what values are possible
® These may come from other places in the code
) For richer data types like strings, design your tests
based on how the values are processed
® E g, transformation, validation, parsing, system usage

Outline

Announcements intermission

Midterm next Tuesday

©) The first midterm exam will be next Tuesday (2/20)

in class
® Open book, open notes, no electronics
® You will have the whole class period
® Topics will be memory safety bugs and attacks, and
threat modeling
® Similar concepts, but less depth, than labs and p-set
® Samples of past midterms on the schedule page

Outline

ASLR and counterattacks

Basic idea

£) "Address Space Layout Randomization”
£) Move memory areas around randomly so attackers
can't predict addresses
©) Keep internal structure unchanged
® Eg, whole stack moves together

Code and data locations

£) Execution of code depends on memory location

0 Eg, on x86-64:
® Direct jumps are relative
® Function pointers are absolute
® Data can be relative (%rip-based addressing)

Relocation (Windows)

£) Extension of technique already used in compilation

©) Keep table of absolute addresses, instructions on
how to update

©) Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

£) “Position-Independent Code / Executable”

£) Keep code unchanged, use register to point to data
area

£) Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)




What's not covered

©) Main executable (Linux PIC)
£) Incompatible DLLs (Windows)
©) Relative locations within a module/area

Entropy limitations

£ Intuitively, entropy measures amount of randomness
in bits
£) Random 32-bit int: 32 bits of entropy

£) ASLR page aligned, so at most 32 — 12 = 20 bits of
entropy on x86-32

£) Other constraints further reduce possibilities

i

Leakage limitations

0 If an attacker learns the randomized base address,
can reconstruct other locations

©) Any stack address — stack unprotected, etc.

Outline

Return address protections

Canary in the coal mine
3 »

K Atk Ak |

a1

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

s
2 124 (%rbp)
r's

® 116(%rbp)

n
BISESE] 8 (ssrbp)
d

——srbp

= |-8(%rbp)

"9 |-16(%rbp)

o
“top" of char(8]
stack

%rsp. 101 |-24(%rbp)

Terminator canary

©) Value hard to reproduce because it would tell the
copy to stop
) StackGuard: 0x00 OD OA FF

® O: String functions

® newline: fgets(), etc.

8 -1 getc()

® carriage return: similar to newline?

©) Doesn't stop: memcpy, custom loops

Random canary

£) Can't reproduce because attacker can't guess
©) For efficiency, usually one per execution
©) Ineffective if disclosed




XOR canary

©) Want to protect against non-sequential overwrites
©) XOR return address with value c at entry

©) XOR again with c before return

) Standard choice for c: see random canary

Further refinements

£) More flexible to do earlier in compiler

£) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

£) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?

What's usually not protected?

£) Backwards overflows

) Function pointers

©) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

€) Fast to access
£) Buggy code/attacker can't read or write
©) Linux/x86-64: },fs:0x28

Complex anti-canary attack

©) Canary not updated on fork in server
©) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
©) ANRY BNRY CNRY DNRY ENRY FNRY

) search 232 — search 4 - 28

Shadow return stack

£) Suppose you have a safe place to store the canary
©) Why not just store the return address there?

©) Needs to be a separate stack

©) Ultimate return address protection




