CSci 427\W
Development of Secure Software Systems
Day 15: OS Protection and Isolation

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

OS: protection and isolation

OS security topics

©) Resource protection

£) Process isolation

©) User authentication (will cover later)
£) Access control (already covered)

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

©) Design: by default processes can do neither
£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

£) Historic: segments

) Modern: paging and page protection
® Memory divided into pages (e.g. 4k)
® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux example

OXFFFFFFFFFFFFFFFS

Kernel
use only

rows{down

Mainlstack

0x40000000

METheap

Static code + data

0x400000

Usually unused

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

Outline

Announcements intermission

Wheeler reading reminder

£) The external reading on OS security is chapters
from a web-hosted book by David A. Wheeler

£) Recall reading questions are due Thursday evening

Outline

More choices for isolation

Ideal: least privilege

£) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root

Least privilege: privilege separation

©) Programs must also be divisible to avoid excess
privilege
) Classic example: multi-process OpenSSH server

“Trusted”, TCB

£ In security, “trusted” is a bad word

) X is trusted: X can break your security
£) "Untrusted” = okay if it's evil

©) Trusted Computing Base (TCB): minimize

Restricted languages

£) Main application: code provided by untrusted parties
©) Packet filters in the kernel

©) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

) Software-based Fault Isolation

©) Instruction-level rewriting
® Analogous to but predates control-flow integrity

©) Limit memory stores and sometimes loads
£) Can't jump out except to designated points
£ Eqg., Google Native Client

Separate processes

©) OS (and hardware) isolate one process from another

©) Pay overhead for creation and communication

©) System call interface allows many possibilities for
mischief

System-call interposition

£) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

£) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
£) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

©) Details: Garfinkel (NDSS'03)

Separate users

£) Reuse OS facilities for access control

£ Unit of trust: program or application

©) Older example: gmail

£) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£) Unix system call to change root directory
£) Restrict/virtualize file system access

©) Only available to root

©) Does not isolate other namespaces

0OS-enabled containers

£) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

©) Strong isolation, full administrative complexity

©) 1/0 interface looks like a network, etc.

Virtual machine designs

©) (Type 1) hypervisor: ‘superkernel’ underneath VMs

€) Hosted: regular OS underneath VMs

£) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

©) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

©) Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

£) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together
£) Experimented with various Windows and Linux
sandboxing techniques

) Blocked 70% of historic vulnerabilities, not all new

ones

) http://seclab.stanford.edu/websec/chromium/

Outline

Time permitting: gmail

Historical background

£) Traditional Unix MTA: Sendmail (BSD)
® Monolithic setuid root program
® Designed for a more trusting era
® In mid-90s, bugs seemed endless
£) Spurred development of new, security-oriented
replacements
® Bernstein’s gmail
® Venema et als Postfix

Distinctive gmail features

©) Single, security-oriented developer

©) Architecture with separate programs and UIDs
©) Replacements for standard libraries

) Deliveries into directories rather than large files

Ineffective privilege separation

©) Example: prevent Netscape DNS helper from
accessing local file system
©) Before: bug in DNS code
— read user's private files
©) After: bug in DNS code

— inject bogus DNS results
— man-in-the-middle attack
— read user's private web data

Effective privilege separation

©) Transformations with constrained 1/0

©) General argument: worst adversary can do is control
output
® Which is just the benign functionality

©) MTA header parsing (Sendmail bug)
£) jpegtopnm inside xloadimage

Eliminating bugs

©) Enforce explicit data flow

©) Simplify integer semantics

£) Avoid parsing

£) Generalize from errors to inputs

”

Eliminating code The “gmail security guarantee

£) $500, later $1000 offered for security bug
©) Never paid out

£) Issues proposed:
® Memory exhaustion DoS

o) Identify common functions
©) Automatically handle errors
©) Reuse network tools

©) Reuse access controls ® Overflow of signed integer indexes
©) Reuse the filesystem) Defensiveness does not encourage more
submissions
gmail today

©) Originally had terms that prohibited modified
redistribution
® Now true public domain

£) Latest release from Bernstein: 1998

©) Patches and successors still continue

©) Does not have large market share

©) All MTAs, even Sendmail, are more secure now

