CSci 427\W
Development of Secure Software Systems
Day 23: Networking and security

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Brief introduction to networking

The Internet

©) A bunch of computer networks voluntarily
interconnected
) Capitalized because there’s really only one

©) No centralized network-level management
® But technical collaboration, DNS, etc.

Layered model (OSI)

. Application (HTTP)

. Presentation (MIME?)
. Session (SSL?)

. Transport (TCP)

. Network (IP)

. Data-link (PPP)

. Physical (I0BASE-T)

— DN W bh OO g

Layered model: TCP/IP

Application protocol (e.g. HTTP)

Application il P 9 A

TCP or UDP
Transport T
IP IP

Network I —— N N
802.11 (WiFi) Ethernet

Link D E— L L

Packet wrapping

application data

segm
TC data TCP| data TCP| data

packets [1P_[TCP|

frames [ethH]IP_|TCP] data |EthT

IP(v4) addressing

o) Interfaces (hosts or routers) identified by 32-bit

addresses
® Written as four decimal bytes, eg. 19216810.2

©) First k bits identify network, 32 — k host within
network
® Can't (anymore) tell k from the bits

©) We'll run out any year now

IP and ICMP

©) Internet Protocol (IP) forwards individual packets

) Packets have source and destination addresses,
other options

£) Automatic fragmentation (usually avoided)

£) ICMP (I Control Message P) adds errors, ping
packets, etc.

UDP

©) User Datagram Protocol: thin wrapper around IP

£) Adds source and destination port numbers (each
16-bit)

©) Still connectionless, unreliable

£) OK for some small messages

TCP

£) Transmission Control Protocol: provides reliable
bidirectional stream abstraction

£) Packets have sequence numbers, acknowledged in
order

©) Missed packets resent later

Flow and congestion control

) Flow control: match speed to slowest link
® “Window" limits number of packets sent but not ACKed
©) Congestion control: avoid traffic jams

® Lost packets signal congestion
® Additive increase, multiplicative decrease of rate

Routing

£) Where do | send this packet next?
® Table from address ranges to next hops

£) Core Internet routers need big tables
£) Maintained by complex, insecure, cooperative

protocols
® Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

£) Address Resolution Protocol maps IP addresses to
lower-level address
® E.g, 48-bit Ethernet MAC address

) Based on local-network broadcast packets

£) Complex Ethernets also need their own routing (but
called switches)

DNS

£) Domain Name System: map more memorable and
stable string names to IP addresses
€ Hierarchically administered namespace
® Like Unix paths, but backwards

£) .edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

©) To be practical, DNS requires caching
® Of positive and negative results
£) But, cache lifetime limited for freshness

©) Also, reverse IP to name mapping

® Based on special top-level domain, IP address written
backwards

Classic application: remote login

£ Killer app of early Internet: access supercomputers
at another university
©) Telnet: works cross-0S
® Send character stream, run regular login program
£ rlogin: BSD Unix
® Can authenticate based on trusting computer connection

comes from
® (Also rsh, rcp)

Outline

Announcements intermission

Last day for Wheeler reading quiz

©) If you were putting this quiz off until the last day,
that's today

Outline

Some classic network attacks

Packet sniffing

£) Watch other people’s traffic as it goes by on network

©) Easiest on:
® Old-style broadcast (thin, “*hub”) Ethernet
® Wireless

£ Or if you own the router

Forging packet sources

©) Source IP address not involved in routing, often not
checked

©) Change it to something else!

©) Might already be enough to fool a naive UDP
protocol

TCP spoofing

£) Forging source address only lets you talk, not listen

) Old attack: wait until connection established, then
DoS one participant and send packets in their place
£ Frustrated by making TCP initial sequence numbers
unpredictable
® Fancier attacks modern attacks are “off-path”

ARP spoofing

©) Impersonate other hosts on local network level

©) Typical ARP implementations stateless, don’t mind
changes

©) Now you get victim's traffic, can read, modify, resend

rlogin and reverse DNS

£) rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

£) Remember, ownership of reverse-DNS is by IP
address

Outline

The web from a security perspective

Once upon a time: the static web

©) HTTP: stateless file download protocol
® TCR usually using port 80
©) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

£) The modern web depends heavily on active software

£) Static pages have ads, paywalls, or “Edit” buttons

£) Many web sites are primarily forms or storefronts

) Web hosted versions of desktop apps like word
processing

Server programs

©) Could be anything that outputs HTML
©) In practice, heavy use of databases and frameworks
£) Wide variety of commercial, open-source, and

custom-written
) Flexible scripting languages for ease of development
® PHP, Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£) ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
£) Flash and Silverlight: last important use was DRM-ed
video

©) Core lanquage: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-O0O
language
® No real similarity with Java
©) Document Object Model (DOM): lets JS interact with
pages and the browser

©) Extensive security checks for untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

£) GET request loads a URL, may have parameters
delimited with ?, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
£) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
£) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

Outline

SQL injection

Relational model and SQL

£) Relational databases have tables with rows and
single-typed columns

£) Used in web sites (and elsewhere) to provide
scalable persistent storage

©) Allow complex queries in a declarative language SQL

Example SQL queries

©) SELECT name, grade FROM Students WHERE
grade < 60 ORDER BY name;

) UPDATE Votes SET count = count + 1 WHERE
candidate = ’John’;

Template: injection attacks

©) Your program interacts with an interpreted language

£) Untrusted data can be passed to the interpreter

£) Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

£) Why is this named most critical web app. risk?
£) Easy mistake to make systematically
£) Can be easy to exploit

) Database often has high-impact contents
® Eg, logins or credit cards on commerce site

Strings do not respect syntax

£) Key problem: assembling commands as strings
) "WHERE name = ’$name’;"

£) Looks like $name is a string

©) Try $name = "me’ OR grade > 80; —-"

Using tautologies

) Tautology: formula that's always true
r) Often convenient for attacker to see a whole table
r) Classic: OR 1=1

Non-string interfaces

£) Best fix: avoid constructing queries as strings
£) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often provide other
syntax

Retain functionality: escape

©) Sanitizing data is transforming it to prevent an attack

) Escaped data is encoded to match language rules
for literal
mEg,\"and\ninC
©) But many pitfalls for the unwary:

) Differences in escape syntax between servers
® Must use right escape for context: not everything's a
string

Lazy sanitization: allow-listing

£) Allow only things you know to be safe/intended

£ Error or delete anything else

©) Short allow-list is easy and relatively easy to secure
£ Eg, digits only for non-negative integer

£) But, tends to break benign functionality

Poor idea: deny-listing

) Space of possible attacks is endless, don't try to
think of them all

£) Want to guess how many more comment formats
SQL has?
©) Particularly silly: deny 1=1

Attacking without the program

) Often web attacks don't get to see the program
® Not even binary, it's on the server
£) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

©) Attacking with almost no feedback
©) Common: only “error” or “no error”

£) One bit channel you can make yourself: if (x) delay
10 seconds

©) Trick to remember: go one character at a time

