
CSci 4271W
Development of Secure Software Systems

Day 23: Networking and security
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

The web from a security perspective

SQL injection

The Internet

A bunch of computer networks voluntarily
interconnected

Capitalized because there’s really only one

No centralized network-level management
But technical collaboration, DNS, etc.

Layered model (OSI)

7. Application (HTTP)

6. Presentation (MIME?)

5. Session (SSL?)

4. Transport (TCP)

3. Network (IP)

2. Data-link (PPP)

1. Physical (10BASE-T)

Layered model: TCP/IP Packet wrapping

IP(v4) addressing

Interfaces (hosts or routers) identified by 32-bit
addresses

Written as four decimal bytes, e.g. 192.168.10.2

First k bits identify network, 32- k host within
network

Can’t (anymore) tell k from the bits

We’ll run out any year now

IP and ICMP

Internet Protocol (IP) forwards individual packets

Packets have source and destination addresses,
other options

Automatic fragmentation (usually avoided)

ICMP (I Control Message P) adds errors, ping
packets, etc.

UDP

User Datagram Protocol: thin wrapper around IP

Adds source and destination port numbers (each
16-bit)

Still connectionless, unreliable

OK for some small messages

TCP

Transmission Control Protocol: provides reliable
bidirectional stream abstraction

Packets have sequence numbers, acknowledged in
order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest link
“Window” limits number of packets sent but not ACKed

Congestion control: avoid traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease of rate

Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure, cooperative
protocols

Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

Address Resolution Protocol maps IP addresses to
lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast packets

Complex Ethernets also need their own routing (but
called switches)

DNS

Domain Name System: map more memorable and
stable string names to IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP address written
backwards

Classic application: remote login

Killer app of early Internet: access supercomputers
at another university
Telnet: works cross-OS

Send character stream, run regular login program

rlogin: BSD Unix
Can authenticate based on trusting computer connection
comes from
(Also rsh, rcp)

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

The web from a security perspective

SQL injection

Last day for Wheeler reading quiz

If you were putting this quiz off until the last day,
that’s today

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

The web from a security perspective

SQL injection

Packet sniffing

Watch other people’s traffic as it goes by on network

Easiest on:
Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in routing, often not
checked

Change it to something else!

Might already be enough to fool a naive UDP
protocol

TCP spoofing

Forging source address only lets you talk, not listen

Old attack: wait until connection established, then
DoS one participant and send packets in their place
Frustrated by making TCP initial sequence numbers
unpredictable

Fancier attacks modern attacks are “off-path”

ARP spoofing

Impersonate other hosts on local network level

Typical ARP implementations stateless, don’t mind
changes

Now you get victim’s traffic, can read, modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

Remember, ownership of reverse-DNS is by IP
address

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

The web from a security perspective

SQL injection

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: last important use was DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline

Brief introduction to networking

Announcements intermission

Some classic network attacks

The web from a security perspective

SQL injection

Relational model and SQL

Relational databases have tables with rows and
single-typed columns

Used in web sites (and elsewhere) to provide
scalable persistent storage

Allow complex queries in a declarative language SQL

Example SQL queries

SELECT name, grade FROM Students WHERE

grade < 60 ORDER BY name;

UPDATE Votes SET count = count + 1 WHERE

candidate = 'John';

Template: injection attacks

Your program interacts with an interpreted language

Untrusted data can be passed to the interpreter

Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

Why is this named most critical web app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact contents
E.g., logins or credit cards on commerce site

Strings do not respect syntax

Key problem: assembling commands as strings

"WHERE name = '$name';"

Looks like $name is a string

Try $name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as strings

SQL mechanism: prepared statement
Original motivation was performance

Web languages/frameworks often provide other
syntax

Retain functionality: escape

Sanitizing data is transforming it to prevent an attack

Escaped data is encoded to match language rules
for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between servers
Must use right escape for context: not everything’s a
string

Lazy sanitization: allow-listing

Allow only things you know to be safe/intended

Error or delete anything else

Short allow-list is easy and relatively easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: deny-listing

Space of possible attacks is endless, don’t try to
think of them all

Want to guess how many more comment formats
SQL has?

Particularly silly: deny 1=1

Attacking without the program

Often web attacks don’t get to see the program
Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself: if (x) delay
10 seconds

Trick to remember: go one character at a time

