CSci 427\W
Development of Secure Software Systems
Day 24: Protocols in practice

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Key distribution and PKI

Public key authenticity

©) Public keys don't need to be secret, but they must
be right

©) Wrong key — can't stop middleperson
©) So we still have a pretty hard distribution problem

Symmetric key servers

£) Users share keys with server, server distributes
session keys

£) Symmetric key-exchange protocols, or channels

£) Standard: Kerberos

£) Drawback: central point of trust

Certificates

©) A name and a public key, signed by someone else
® Ca = Signg(A, Ka)

£) Basic unit of transitive trust

£ Commonly use a complex standard “X.509"

Certificate authorities

£) "CA” for short: entities who sign certificates
£) Simplest model: one central CA
£) Works for a single organization, not the whole world

Web of trust

) Pioneered in PGP for email encryption
©) Everyone is potentially a CA: trust people you know

£) Works best with security-motivated users
® Ever attended a key signing party?

CA hierarchies

£) Organize CAs in a tree
©) Distributed, but centralized (like DNS)
£) Check by follow a path to the root

£) Best practice: sub CAs are limited in what they
certify

PKI for authorization

©) Enterprise PKI can link up with permissions

£) One approach: PKI maps key to name, ACL maps
name to permissions

£) Often better: link key with permissions directly, name
is a comment

The revocation problem

£) How can we make certs “go away” when needed?
£) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Announcements intermission

Project 1 status

£) Four sample attacks are available on Piazza now

©) The TAs and | are hard at work and
grading/commenting on the first submissions
® But they don't look like they'll be ready by Friday
£) Reqular submission deadline for part 2 is the 19th, a
week from tomorrow

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu YIonen in 1995
£) Original version commercialized

£) Fully open-source OpenSSH from OpenBSD

£) Protocol redesigned and standardized for "SSH 2"

OpenSSH t-shirt
www-OpenSSH - > ~

Putting an end to unencrypted network logins

SSH host keys

) Every SSH server has a public/private keypair
©) Ideally, never changes once SSH is installed

) Early generation a classic entropy problem
® Especially embedded systems, VMs

Authentication methods

£) Password, encrypted over channel
©) .shosts: like .rhosts, but using client host key
) User-specific keypair
® Public half on server, private on client
) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

£ 1.x had only CRC for integrity
® Worst case: when used with RC4
©) Injection attacks still possible with CBC
® CRC compensation attack
£) For least-insecure 1.x-compatibility, attack detector

©) Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

©) IV chaining: IV based on last message ciphertext

® Allows chosen plaintext attacks
m Better proposal: separate, random IVs

£) Some tricky attacks still left

® Send byte-by-byte, watch for errors
® Of arguable exploitability due to abort

©) Now migrating to CTR mode

SSH over SSH

£) SSH to machine 1, from there to machine 2
= Common in these days of NATs

£) Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy
2. Timing attacks against password typing

SSH (non-)PKI

©) When you connect to a host freshly, a mild note
©) When the host key has changed, a large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!

It is also possible that a host key has just been changed.

Outline

SSL/TLS

SSL/TLS

©) Developed at Netscape in early days of the public
web
® Usable with other protocols too, eg. IMAP
©) SSL 10 pre-public, 2.0 lasted only one year, 3.0
much better
©) Renamed to TLS with RFC process
® TLS 10 improves SSL 3.0
) TLS 11 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

£) TLS 10 uses previous ciphertext for CBC IV

£) But, easier to attack in TLS:

® More opportunities to control plaintext
® Can automatically repeat connection

£) "BEAST" automated attack in 2011 TLS 1.1 wakeup
call

Compression oracle vuln.

©) Compr(S || A), where S should be secret and A is
attacker-controlled

©) Attacker observes ciphertext length
0 If A is similar to S, combination compresses better
£) Compression exists separately in HTTP and TLS

But wait, there’s more!

£) Too many vulnerabilities to mention them all in

lecture
£) Kaloper-Mersinjak et al. have longer list
® “Lessons learned” are variable, though

£) Meta-message: don't try this at home

HTTPS hierarchical PKI

) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

£) Many of these in turn have sub-CAs
©) Also, “wildcard” certs for individual domains

Hierarchical trust?

£) No. Any CA can sign a cert for any domain

£) A couple of CA compromises recently

£) Most major governments, and many companies
you've never heard of, could probably make a
google.com cert

) Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

©) Certs have a bit that says if they're a CA

©) All but last entry in chain should have it set

©) Browser authors repeatedly fail to check this bit
©) Allows any cert to sign any other cert

MD5 certificate collisions

£) MD5 collisions allow forging CA certs

) Create innocuous cert and CA cert with same hash

® Requires some guessing what CA will do, like sequential
serial numbers
® Also 200 PS3s

£) Oh, should we stop using that hash function?

CA validation standards

£) CA's job to check if the buyer really is foo.com

©) Race to the bottom problem:;

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

©) “Extended validation” (green bar) certs attempt to fix

HTTPS and usability

£) Many HTTPS security challenges tied with user
decisions
£ Is this really my bank?

£) Seems to be a quite tricky problem
® Security warnings often ignored, etc.

Outline

DNSSEC

DNS: trusted but vulnerable

£) Almost every higher-level service interacts with DNS
£) UDP protocol with no authentication or crypto
® Lots of attacks possible
£) Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies
+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

First cut: signatures and certificates

£) Each resource record gets an RRSIG signature

® Eg, A record for one name—address mapping
® Observe: signature often larger than data

©) Signature validation keys in DNSKEY RRs
£) Recursive chain up to the root (or other “anchor”)

Add more indirection

£) DNS needs to scale to very large flat domains like
.com

) Facilitated by having single DS RR in parent indicating
delegation

©) Chain to root now includes DSes as well

Negative answers

£) Also don't want attackers to spoof non-existence
® Gratuitous denial of service, force fallback, etc.

£) But don't want to sign “x does not exist” for all x

©) Solution 1, NSEC: “there is no name between acacia
and baobab”

Preventing zone enumeration

©) Many domains would not like people enumerating all
their entries

) DNS is public, but "not that public”
©) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

£) "DNS-based Authentication of Named Entities”
) DNS contains hash of TLS cert, don't need CAs
£) How is DNSSEC's tree of certs better than TLS's?

Signing the root

) Political problem: many already distrust US-centered
nature of DNS infrastructure

©) Practical problem: must be very secure with no
single point of failure
©) Finally accomplished in 2010

® Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

£) Standard deployment problem: all cost and no
benefit to being first mover

©) Servers working on it, mostly top-down
) Clients: estimated around 30%

£) Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

£) Users increasingly want privacy for their DNS
queries as well

) Older DNSCurve and DNSCrypt protocols were not
standardized

©) More recent "DNS over TLS” and "DNS over HTTPS”
are RFCs

©) DNS over HTTPS in major browsers might have
serious centralization effects

