CSci 427\W
Development of Secure Software Systems
Day 4: More threats, and mitigation

Stephen McCamant (he/him)
University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Threat modeling

©) What are we building?

) What could go wrong?

) What are you doing about it?
) How did you do?

Star Wars TM and (C) Lucasfilm, Ltd.

What could go wrong

©) A good way to start thinking about the security of a
system is to by describing how it works.

©) Flows that cross trust boundaries are a good place
to think about what could go wrong. ..

What could go wrong?

£) Spoofing

£) T.ampering

£) R.epudiation

£) Lnformation Disclosure
©) D.enial of Service

£) Elevation of Privilege

Beyond STRIDE

©) STRIDE is useful as a starting point. Other useful
ways to think about “what could go wrong™:
® Attack trees
® Attacker profiles
® Attack libraries
£) These often focus on the goal of the attacker rather

than the goal of the developer/operator.

Attack trees

1. Create an attack tree
a. Find a goal
i. Steal from textbook

1. Reach chapter 4
2. Look at examples

ii. Steal from Internet
b. Find subgoals
c. Draw on slide...

Attack trees

1. Create an attack tree
a. Find a goal prmr v Py e
i, Steal from textbook ’ !
1. Reach chapter 4 AR Wten | [ Gar comb

2. Look at examples !
ii. Steal from Internet
b. Find subgoals
c. Draw on slide. ..

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Attacker profiles

© Spy
) Terrorist
©) Thief

) Vandal

0 Insider
D...

See also: Shostack appendix C

>
A




Outline

Announcements break

Homework 1

£) Now open for submission on Gradescope (linked
from Canvas)

©) Due Tuesday 2/4, by 1:59pm

©) May do in groups of up to 3 students

£) Be careful of the following on Gradescpe:

® Include the names of your other group members
® Provide the right range of pages for each answer

Outline

More threat modeling perspectives, contd

Attack libraries

©) Knowing different kinds of attacks can also help with
the question “what can go wrong?”
£) Examples:

® CAPEC (https://capec.mitre.org/)
® ATT&CK (nttps://attack.mitre.org/)
s OWASP Top 10 (https://owasp.org/www-project-top-ten/)

Mechanism-based

Another way to categorize possible attacks is by the
mechanism they use:

£) Misconfiguration

©) Incomplete validation

£) Memory corruption (all about this next week)

o) Interpreters

©) Social engineering (last unit of course)

Misconfiguration

Are there settings that should prevent an attack but
don't?
) Default passwords
£) Unnecessary network services (Telnet, SMTR
chargen, finger)
£ Incorrect access-control settings (world
read/writeable logs, open password files...)

Incomplete validation

Inputs that cross trust boundaries should be validated for
purpose. Some pitfalls:
) Allowlist vs. blocklist (deny list)
£) TOCTOU
£) Non-canonicalization (directory traversal, DNS name
vs. IP address)

Interpreters
Inputs that can have code:
) Javascript (in HTML, PDFs, emails, ...)
) Macros (e.g. in MS Office documents)
£) Anything passed to command shell, SQL, shell script...
) JSON, XML, YAML, and object serialization formats. ..
) Format strings (printf ("This is actually code.") ;)

) Compressed files/strings (zip, xz, bzip2, ...)

https://googleprojectzero.blogspot.com/2021/12/a~deep-dive-into-nso-zero-click.html




What to do about threats

©) Mitigate: add a defense, which may not be complete

©) Eliminate: such as by removing functionality
o) Transfer functionality: let someone else handle it
©) Transfer risk: convince another to bear the cost

) Accept risk: decide that the risk (probability - loss) is

sufficiently low

Mitigations

What are we doing about it? How did we do?
) Spoofing: authentication (OS), crypto, canonicalization

Mitigations
What are we doing about it? How did we do?
) Spoofing: authentication (OS), crypto, canonicalization

) Tampering: OS controls (access control, isolation), crypto

Mitigations
What are we doing about it? How did we do?
) Spoofing: authentication (0S), crypto, canonicalization
) Tampering: OS controls (access control, isolation), crypto

) Repudiation: logging and audits

Mitigations
What are we doing about it? How did we do?
£) Spoofing: authentication (OS), crypto, canonicalization
) Tampering: OS controls (access control, isolation), crypto
) Repudiation: logging and audits

) Information Disclosure: OS controls, crypto

Mitigations
What are we doing about it? How did we do?
) Spoofing: authentication (OS), crypto, canonicalization
) Tampering: OS controls (access control, isolation), crypto
) Repudiation: logging and audits
) Information Disclosure: OS controls, crypto

) Denial of Service: OS controls, rate limits/throttling

Mitigations
What are we doing about it? How did we do?
) Spoofing: authentication (OS), crypto, canonicalization
) Tampering: OS controls (access control, isolation), crypto
) Repudiation: logging and audits
) Information Disclosure: OS controls, crypto
) Denial of Service: OS controls, rate limits/throttling

) Elevation of Privilege: memory mitigation, OS controls,
sandboxes/containers, input validation

Outline

Revisiting diagram examples




Content

GitHub Cl swim lanes

Developer GitHub

Runner

,,,,,,

Example: LMS (Canvas, etc))




