CSci 427\W
Development of Secure Software Systems
Day 5: Memory Corruption 1
(or, why to avoid C and C++)

Stephen McCamant (he/him)
University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

To follow along

From a Linux terminal:

git clone https://github.umn.edu/badlycoded/memcorr.git

(various example code from the next 3 lectures)

Memory corruption

£) Memory corruption bugs happen when a program
writes data to an area of memory that it shouldn't.

©) Type-safe languages such as Java, OCaml, Rust,
Swift, and Go can prevent most such bugs.

0 In C or C++ it is easy to write a program that
corrupts memory:

int x = 0x0011;
char buff[4];
buff[4] = ’a’

So what?

Recall, each function call has a stack frame that stores:
£) Function arguments
£) Local variables
£) Any “callee-saved” register values

£) The memory address of the next instruction from
the calling function, i.e. the return address.

Typical stack frame

... (previous frame)

arg2

arg1

Stack “grows” by
return address decrementing SP

saved frame pointer
FP

local

variables
NJ

Smashing the stack

. fi .
(prev. frame) void func(char *str) {
(prev. frame) char buf [8] ;
return address StGCy (buf 5 str) H
saved frame pointer do_something (buf) 5
buf[0..7] }
SP

Calling func ("AAAAAAAABBBBBBBBABCDEFGH")

Smashing the stack, contd

fi :
(prev. frame) void func(char *str) {
(prev. frame), one byte NUL char buf[8];
H
ABCDEFGH (was ret. addr) strcpy(buf, str);
BBBBBBBB (was sfp) do_something (buf) ;
AAAAAAAA ¥
sp

Calling func("AAAAAAAABBBBBBBBABCDEFGH")
After strcpy

Func will try to return to instruction at address ABCDEFGH

For fun and profit

more shellcode.. void func(char *str) {
C shellcode char buf[8];
OXNEXTWORD (ret. ad) strcpy (buf, str);
BBBBBBBB (was sfp) do_something(buf) ;
}
o AAAAAAAA

Classic attack: replace ABCDEFGHI with address inside overwrite on
stack, insert compiled shell code that calls exec("bin/sh")

https://archives.phrack.org/issues/49/14.txt

Memory corruption: big picture

©) Modern OSes and compilers block such “easy”
attacks, but more clever variants can still work.

©) Today: different ways memory can become
corrupted.

£) Next lecture: some attacks based on memory
corruption.

Outline

Announcements break

Homework 1

©) Now open for submission on Gradescope (linked
from Canvas)

) Due tonight by 1:59pm
©) May do in groups of up to 3 students

©) Be careful of the following on Gradescpe:

® Include the names of your other group members
® Provide the right range of pages for each answer

Outline

Memory corruption vectors

Memory corruption 1. overflow
Writing past the end of a stack buffer:

char buf[8];
strepy (buf, "xxxxxxxxxxx") ;

Writing past the end of a heap buffer:
char *p = malloc(8);

char *q = "XXXXXXXXXXXXX";

while (xp++ = *q++) ;

Lots of functions will do this “for” you: strcpy, gets,
strcat, memcpy, scanf, sprintf...

Memory corruption 2: temporal

Manipulating memory allocation functions, e.g.
use-after-free:

char *p = malloc(sizeof (long));
strcpy(p, "hello");

free(p);

long *x = malloc(sizeof (long));
*x = 17;

printf("%8s\n", *p);

Memory corruption 3: integers
Pointer arithmetic and integer overflows:
uintptr_t pl = UINTPTR_MAX;
char *p2 = malloc(32);
*(p2 + pl) = A%,
Often caused by string-to-integer conversions:

int x = strtol(untrusted_input_string, NULL, 10);
return alx];

Memory corruption 4: format strings
printf("May the %dth be %s\n", 4, "with you");
S Format String

£) Format strings are little programs.

©) printf and friends step through the format string,
writing output to a buffer.

£) When the interpreter finds a % directive, it looks at
the next word on the stack for the argument.

©) So what happens if we call printf ("%p"); ?

Memory corruption 4: format strings (2)
printf("May the %dth be %s\n", 4, "with you");
™ Format String

©) Format strings are little programs.

©) An interesting option is positional arguments:
%#i$w.pC uses argument at position i instead of the
next argument. (w is "width”, p is “precision”, both
optional)
printf ("%2%$x\n",0x17,0x42) ;

Memory corruption 4: format strings (3)
printf("May the %dth be %s\n", 4, "with you");
S Format String

£) Format strings are little programs.

©) %n is an interesting conversion: it treats its
argument as a pointer to int, and stores the
number of bytes output to the buffer so far:
int ¢ = 42;
char s[128];
sprintf (s, "%127x%n",0,&c) ;
printf("%x\n",c);

Memory corruption 4: format strings (4)

Putting things together:
£) The attacker knows there is a pointer on the stack
to variable v, wants to set v to value z
©) Find the right position (in the stack) i
©) Make a format string that prints z characters

£) Store (via %n) the number of characters to
“argument” i
printf ("%zxhi$n) ;

Outline

Low-level code example

