
CSci 4271W
Development of Secure Software Systems

Day 5: Memory Corruption 1
(or, why to avoid C and C++)

Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

To follow along

From a Linux terminal:

git clone https://github.umn.edu/badlycoded/memcorr.git

(various example code from the next 3 lectures)

Memory corruption

Memory corruption bugs happen when a program
writes data to an area of memory that it shouldn’t.
Type-safe languages such as Java, OCaml, Rust,
Swift, and Go can prevent most such bugs.
In C or C++ it is easy to write a program that
corrupts memory:
int x = 0x0011;

char buff[4];

buff[4] = 'a'

So what?

Recall, each function call has a stack frame that stores:

Function arguments

Local variables

Any “callee-saved” register values

The memory address of the next instruction from
the calling function, i.e. the return address.

Typical stack frame Smashing the stack

void func(char *str) {

char buf[8];

strcpy(buf, str);

do_something(buf);

}

Calling func("AAAAAAAABBBBBBBBABCDEFGH")

Smashing the stack, cont’d

void func(char *str) {

char buf[8];

strcpy(buf, str);

do_something(buf);

}

Calling func("AAAAAAAABBBBBBBBABCDEFGH")

After strcpy

Func will try to return to instruction at address ABCDEFGH

For fun and profit

void func(char *str) {

char buf[8];

strcpy(buf, str);

do_something(buf);

}

Classic attack: replace ABCDEFGHI with address inside overwrite on

stack, insert compiled shell code that calls exec("bin/sh")

https://archives.phrack.org/issues/49/14.txt

Memory corruption: big picture

Modern OSes and compilers block such “easy”
attacks, but more clever variants can still work.

Today: different ways memory can become
corrupted.

Next lecture: some attacks based on memory
corruption.

Outline

Memory corruption intro

Announcements break

Memory corruption vectors

Low-level code example

Homework 1

Now open for submission on Gradescope (linked
from Canvas)

Due tonight by 11:59pm

May do in groups of up to 3 students

Be careful of the following on Gradescpe:
Include the names of your other group members
Provide the right range of pages for each answer

Outline

Memory corruption intro

Announcements break

Memory corruption vectors

Low-level code example

Memory corruption 1: overflow
Writing past the end of a stack buffer:
char buf[8];

strcpy(buf,"xxxxxxxxxxx");

Writing past the end of a heap buffer:
char *p = malloc(8);

char *q = "xxxxxxxxxxxxx";

while (*p++ = *q++) ;

Lots of functions will do this “for” you: strcpy, gets,
strcat, memcpy, scanf, sprintf. . .

Memory corruption 2: temporal

Manipulating memory allocation functions, e.g.
use-after-free:

char *p = malloc(sizeof(long));

strcpy(p, "hello");

free(p);

long *x = malloc(sizeof(long));

*x = 17;

printf("%8s\n", *p);

Memory corruption 3: integers

Pointer arithmetic and integer overflows:

uintptr_t p1 = UINTPTR_MAX;

char *p2 = malloc(32);

*(p2 + p1) = 'A';

Often caused by string-to-integer conversions:

int x = strtol(untrusted_input_string, NULL, 10);

return a[x];

Memory corruption 4: format strings

Format strings are little programs.

printf and friends step through the format string,
writing output to a buffer.

When the interpreter finds a % directive, it looks at
the next word on the stack for the argument.

So what happens if we call printf("%p"); ?

Memory corruption 4: format strings (2)

Format strings are little programs.

An interesting option is positional arguments:
%i$w.pC uses argument at position i instead of the
next argument. (w is “width”, p is “precision”, both
optional)

printf("%2$x\n",0x17,0x42);

Memory corruption 4: format strings (3)

Format strings are little programs.
%n is an interesting conversion: it treats its
argument as a pointer to int, and stores the
number of bytes output to the buffer so far:
int c = 42;

char s[128];

sprintf(s,"%127x%n",0,&c);

printf("%x\n",c);

Memory corruption 4: format strings (4)

Putting things together:

The attacker knows there is a pointer on the stack
to variable v, wants to set v to value z

Find the right position (in the stack) i

Make a format string that prints z characters

Store (via %n) the number of characters to
“argument” i
printf("%zx%i$n);

Outline

Memory corruption intro

Announcements break

Memory corruption vectors

Low-level code example

