
CSci 4271W
Development of Secure Software Systems

Day 6: Memory corruption 2, attack strategies
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Memory corruption

Memory corruption bugs happen when a program
writes data to an area of memory that it shouldn’t.
Type-safe languages such as Java, OCaml, Rust,
Swift, and Go can prevent most such bugs.
In C or C++ it is easy to write a program that
corrupts memory:
int x = 0x0011;

char buff[4];

buff[4] = 'a'

So what?

Recall, each function call has a stack frame that stores:

Function arguments

Local variables

Any “callee-saved” register values

The memory address of the next instruction from
the calling function, i.e. the return address.

Typical stack frame

Smashing the stack

void func(char *str) {

char buf[8];

strcpy(buf, str);

do_something(buf);

}

Calling func("AAAAAAAABBBBBBBBABCDEFGH")

Smashing the stack, cont’d

void func(char *str) {

char buf[8];

strcpy(buf, str);

do_something(buf);

}

Calling func("AAAAAAAABBBBBBBBABCDEFGH")

After strcpy

Func will try to return to instruction at address ABCDEFGH

For fun and profit

void func(char *str) {

char buf[8];

strcpy(buf, str);

do_something(buf);

}

Classic attack: replace ABCDEFGHI with address inside overwrite on

stack, insert compiled shell code that calls exec("bin/sh")

https://archives.phrack.org/issues/49/14.txt

Last time

char *p = malloc(8);

char *q = "xxxxxxxxxxxxx";

while (*p++ = *q++) ;

char *p = malloc(8);

strcpy(p, "hello");

free(p);

long *x = malloc(8);

*x = 65;

strlen(p);

char *p = malloc(32);

*(--p) = 'A';

char *fmt = "%97x%13$n";

printf(fmt);

Outline

Review from last lecture

Announcements break

Memory corruption strategies

Low-level code examples

Upcoming events

Monday’s lab is on stack smashing

Homework 2 is available now, will be due 2/18

Project 1 information will be out next week

Midterm 1 is Thursday 2/20

Outline

Review from last lecture

Announcements break

Memory corruption strategies

Low-level code examples

Memory corruption: big picture

Modern OSes and compilers block such “easy”
attacks, but more clever variants can still work.
Why doesn’t classic stack smashing work anymore?

Non-executable stack (W � X or DEP)
Stack canaries/cookies
Address space layout randomization (ASLR)

Non-executable stack
Memory pages can be marked as writeable or an
executable, but not both at noce
This prevents jumping to code placed on the stack
or heap.

But many library/system calls can load a new binary/shell
(exec, system, popen) and libc is always in memory

A “return to libc” attack works by overwriting the
return address with a pointer to such a function

More general: “return-oriented programming” (ROP)

Non-executable stack
Memory pages can be marked as writeable or an
executable, but not both at noce
This prevents jumping to code placed on the stack
or heap.

But many library/system calls can load a new binary/shell
(exec, system, popen) and libc is always in memory

A “return to libc” attack works by overwriting the
return address with a pointer to such a function
More general: “return-oriented programming” (ROP)

Canaries/stack cookies ()

A canary, aka “stack cookie”, is a random value pushed
on the stack between the return address and the local
variables.
char s[128];

int local;

// do some stuff

return;

!

uint64_t cookie = 0xe99dbf2dd7ba0ad8;
char s[128];
int local;
// do some stuff
assert(cookie == 0xe99dbf2dd7ba0ad8);
return;

Overwrite an index, use a format string, leak the
cookie. . . Or change something else!

What else to change?

There are other locations in C/C++ programs that can be
used to direct control flow:

Function pointers: used for callbacks, Global Offset
Table (GOT), . . .

Exception / signal handlers

setjmp/longjmp buffers

vtable pointers

What else to change?

There are other locations in C/C++ programs that can be
used to direct control flow:

Function pointers: used for callbacks, Global Offset
Table (GOT), . . .

Exception / signal handlers

setjmp/longjmp buffers

vtable pointers

What else to change?

There are other locations in C/C++ programs that can be
used to direct control flow:

Function pointers: used for callbacks, Global Offset
Table (GOT), . . .

Exception / signal handlers

setjmp/longjmp buffers

vtable pointers

What else to change?

There are other locations in C/C++ programs that can be
used to direct control flow:

Function pointers: used for callbacks, Global Offset
Table (GOT), . . .

Exception / signal handlers

setjmp/longjmp buffers

vtable pointers

What else to change?

There are other locations in C/C++ programs that can be
used to direct control flow:

Function pointers: used for callbacks, Global Offset
Table (GOT), . . .

Exception / signal handlers

setjmp/longjmp buffers

vtable pointers

What are vtables?

Virtual functions are implemented by lookups in a table
pointed to by a hidden field in an object
class Example {

public:
virtual void doThing() {

...
}

};

void vulnerable(Example *p) {
delete p;
char *buf=malloc(sizeof(Example));
fill_untrusted(buf);
p->doThing();

}

Overwriting the vtable pointer (by use-after-free, heap
overflow or stack overflow) can redirect a method call to
an arbitrary address.

Address space. . .

Address space layout of a typical Linux/x86-64 process:

. . . layout randomization

Address space layout randomization (ASLR) randomizes:

Stack location (always): hard to find the right
address on stack to jump to

Heap location (often): hard to find address of heap
buffer to stash shellcode

Shared libraries (often): hard to find address of libc

Code/data segments (sometimes): hard to find
address of existing code

ASLR problems

32-bit addresses are easy(ish) to guess (w/big NOP
sled)

Legacy code can prevent relocating libraries/code
segment

Relative offsets are maintained (for ret2libc/ROP)

Linux default does not relocate code/data segments

Uninitialized read, format string, interpreter bugs can
leak secrets (ASLR offsets, also cookies)

Outline

Review from last lecture

Announcements break

Memory corruption strategies

Low-level code examples

