
CSci 4271W
Development of Secure Software Systems

Day 7: Memory corruption 3, mitigation
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Memory corruption

Memory corruption bugs happen when a program
writes data to an area of memory that it shouldn’t.

Type-safe languages such as Java, OCaml, Rust,
Swift, and Go can prevent most such bugs.

Mitigation 1: use a type-safe language for
development.

Are we done?

Some code still needs to run with substantial C/C++ code
bases. What can we do?

Development: Lint/static analysis (SAST), compiler
warnings, code review

Compiler: Stack protector, FORTIFY, ASAN, CFI

OS: W�X/DEP, ASLR, Isolation/sandboxing

Processor: ARMv8 PAC

Stack protector

GCC and Clang have -fstack-protector on by default.

Stack cookies in all functions with stack buffers

Buffers moved to “top” of local variables

Shadow stack

The stack cookie value needs to be stored
somewhere safe

So, why not store all return addresses somewhere safe?

Needs to be a stack, but separate from the one
where buffers go

Supported by Clang for AArch64 (including Android)
and RISC-V

FORTIFY SOURCE
GCC and Clang have the -D_FORTIFY_SOURCE option

Protects memcpy, strcpy, strcat, sprintf into static buffers.

char buf[2];

strcpy(buf, "abc"); //compile-time warning!

char *p = "01234567"

char buf[8];

strcpy(buf, p); //run-time abort

char *p = "01234567"

char *buf = malloc(8)

strcpy(buf, p); // won't help here, alas

Address Sanitizer

GCC and Clang have the -fsanitize=address option
All allocations (stack+heap)
have “red zone” buffers

Separate “shadow” memory
records allocated regions

All loads/stores checked
against shadow records

Address Sanitizer

GCC and Clang have the -fsanitize=address option
All allocations (stack+heap)
have “red zone” buffers

Separate “shadow” memory
records allocated regions

All loads/stores checked
against shadow records

Mostly a testing tool, because of high overhead

Control-flow integrity (CFI)

CFI checks that (indirect) calls only go to function start, returns only
jump to after call sites.

Originally introduced by Abadi et al. in CCS 2005 (source for figures)

Control-flow integrity (CFI)
CFI checks that (indirect) calls only go to function start, returns only
jump to after call sites.

Clang: -fsanitize=cfi
MSVC: /guard:cf (for calls)

CFI rewriting examples (Intel 32-bit)

call [ebx+8] ; call fptr !

mov eax, [ebx+8] ; load fptr
cmp [eax+4], 12345678h ; comp w/ID
jne error_label ; if != fail
call eax ; call fptr
prefetchna [AABBCCDDh] ; label ID

ret 10h ; return !

mov ecx, [esp] ; load ret
add esp, 14h ; pop 20
cmp [ecx+4], ; compare

AABBCCDDh ; w/ID
jne error_label ; if!=fail
jmp ecx ; jump ret

CFI limitations 1

int main(int argc, char **argv) {

int bad_idea = 0;

char overflow_me[8];

char *p = argv[1];

while (*overflow_me++ = *p++);

if (bad_idea)

system("/bin/sh");

return 0;

}

CFI can’t stop overflows that don’t change control flow

CFI limitations 2
void stooge() {

char value[16];
char ind[16];
intptr_t index = 0;
fgets(ind,15,stdin);
index = strtol(ind,NULL,16);
fgets(value+index,9,stdin);
return; }

int am_i_root() {
return geteuid() == 0; }

void harmless() {
stooge();
return; }

void why() {
if (am_i_root()) return;
stooge();
system("/bin/sh"); }

int main(...) {
if (am_i_root()) harmless();
else why(); }

Standard CFI doesn’t prevent returning to unintended but
legitimate call sites.

OS: non-executable stack
Memory pages can be marked as writeable or an
executable, but not both at once (W xor X, or DEP)
This prevents jumping to code placed on the stack
or heap.

But many library/system calls can load a new binary/shell
(exec, system, popen) and libc is always in memory

A “return to libc” attack works by overwriting the
return address with a pointer to such a function

More general: “return-oriented programming” (ROP)

OS: non-executable stack
Memory pages can be marked as writeable or an
executable, but not both at once (W xor X, or DEP)
This prevents jumping to code placed on the stack
or heap.

But many library/system calls can load a new binary/shell
(exec, system, popen) and libc is always in memory

A “return to libc” attack works by overwriting the
return address with a pointer to such a function
More general: “return-oriented programming” (ROP)

Address space. . .

Address space layout of a typical Linux/x86-64 process:

. . . layout randomization

Address space layout randomization (ASLR) randomizes:

Stack location (always): hard to find the right
address on stack to jump to

Heap location (often): hard to find address of heap
buffer to stash shellcode

Shared libraries (often): hard to find address of libc

Code/data segments (sometimes): hard to find
address of existing code

ASLR problems

32-bit addresses are easy(ish) to guess (w/big NOP
sled)

Legacy code can prevent relocating libraries/code
segment

Relative offsets are maintained (for ret2libc/ROP)

Linux default does not relocate code/data segments

Uninitialized read, format string, interpreter bugs can
leak secrets (ASLR offsets, also cookies)

Hardware: PAC

“64-bit” architectures don’t actually use all the bits
in an address (e.g., 48 bits on x86-64, ARM-64)

ARMv8 idea: use top 3–24 bits of code pointers to
hold a “Pointer Authentication Code” (PAC).

Processor using PACs has instructions to set a
code, and check a code before jumping there.

Each PAC is specific to a program context and a
key. Used in recent versions of iOS/macOS.

Spot the bug(s)
void checkpassword(FILE *pwfile) {

int taunt = 1;
char password[10], input[10];
char *inp = input;
fgets(password,9,pwfile);
password[8]='\0';
printf("Enter password (at most 8 letters):");
do {

*inp = getchar();
} while (*inp++ != '\n');
input[8] = '\0';
if (strncmp(input,password,8) == 0) taunt = 0;
if (taunt) {

printf("Loser, the password is definitely not ");
printf(input);

} else return success();
}

