CSci 427IW
Development of Secure Software Systems
Day 7: Memory corruption 3, mitigation

Stephen McCamant (he/him)
University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Memory corruption

£) Memory corruption bugs happen when a program
writes data to an area of memory that it shouldn't.

£) Type-safe languages such as Java, OCaml, Rust,
Swift, and Go can prevent most such bugs.

£) Mitigation 1. use a type-safe language for
development.

Are we done?

Some code still needs to run with substantial C/C+ code
bases. What can we do?

©) Development: Lint/static analysis (SAST), compiler
warnings, code review

) Compiler: Stack protector, FORTIFY, ASAN, CFI

) OS: W X/DEP ASLR, Isolation/sandboxing

©) Processor: ARMv8 PAC

Stack protector

GCC and Clang have -fstack-protector on by default.
£) Stack cookies in all functions with stack buffers
£) Buffers moved to “top” of local variables

return address return address

saved frame pointer saved frame pointer
int x [4bytes]) ©

char buf(8] [8 bytes] char buf[8] [8 bytes]

int x [4 bytes]

Shadow stack

©) The stack cookie value needs to be stored
somewhere safe
® So, why not store all return addresses somewhere safe?
©) Needs to be a stack, but separate from the one
where buffers go

©) Supported by Clang for AArch64 (including Android)
and RISC-V

FORTIFY_SOURCE

£) GCC and Clang have the -D_FORTIFY_SQURCE option
) Protects memcpy, strcpy, strcat, sprintf into static buffers.

char buf[2];

strcpy(buf, "abc"); //compile-time warning!

char *p = "01234567"

char buf[8];

strcpy(buf, p); //run-time abort

char *p = "01234567"

char *buf = malloc(8)

strcpy(buf, p); // won’t help here, alas

Address Sanitizer

GCC and Clang have the -fsanitize=address option
©) All allocations (stack+heap) pr—

have “red zone” buffers winted & x
©) Separate “shadow” memory
records allocated regions

o) All loads/stores checked
against shadow records el

<shadow stack>

<shadow heap>

Address Sanitizer
GCC and Clang have the -fsanitize=address option
£ All allocations (stack+heap) pr—
have “red zone” buffers wint6d_t x
£) Separate “shadow” memory
records allocated regions

©) All loads/stores checked
against shadow records malloc(1624)

Mostly a testing tool, because of high overhead

<shadow stack>

<shadow heap>

Control-flow integrity (CFl)

CFl checks that (indirect) calls only go to function start, returns only
jump to after call sites.

bool lt(int x, int y) { sort2():
return x < y;

’ ¢
bool gt(int x, int y) { ol sort|”
return x > y;

Tt s
) T

Tabel 23
b¢ % S gt0):
void call sort hret 55 N
sort2(int a[], int b[], int len) - &
{ “pret 23

tabel 5547
sort(a, len, 1t);

, sort(b, len, gt); et

Originally introduced by Abadi et al. in CCS 2005 (source for figures)

Control-flow integrity (CFl)

CFl checks that (indirect) calls only go to function start, returns only
jump to after call sites.
bool lt(int x, int y) { sort2(): sort(): t():

return x < y; Tabel 55 Tabel 17
call 17, ret 23

}
Tabel 23 ¢S
T

bool gt(int x, int y) {
return x > y;

Y

gt():
Tabel 17

c pret 55

sort2(int a[], int b[], int len)

1 Tabel 55
sort(a, len, lt); S

) sort(b, len, gt); et

Clang: -fsanitize=cfi
MSVC: /guard:cf (for calls)

CFl rewriting examples (Intel 32-bit)

mov eax, [ebx+8] ; load fptr
cmp [eax+4], 12345678h ; comp w/ID
call [ebx+8] ; call fptr —) jne error label ; if != fail
call eax ; call fptr

prefetchna [AABBCCDDh] ; label ID

mov ecx, [esp] ; load ret
add esp, 14h ; pop 20
. cmp [ecx+4], ; compare
ret 10h ; return — AABBCCDDh ; w/ID
jne error_label ; if!=fail
Jjmp ecx ; jump ret

CFI limitations 1

int main(int argc, char **xargv) {

int bad_idea = 0;

char overflow_me[8];

char *p = argv[i];

while (xoverflow_me++ = *p++);

if (bad_idea)
system("/bin/sh");

return 0;

}
CFI can't stop overflows that don't change control flow

CFI limitations 2

void stooge() { void harmless() {
char value[16]; stooge();
char ind[16]; return; }
intptr_t index = 0; void why() {
fgets(ind, 15,stdin) ; if (am_i_root()) return;
index = strtol(ind,NULL,16); stooge();
fgets(value+index,9,stdin) ; system("/bin/sh"); }
return; } int main(...) {

int am_i_root() { if (am_i_root()) harmless();
return geteuid() == 0; } else why(); }

Standard CFl doesn't prevent returning to unintended but
legitimate call sites.

0OS: non-executable stack

£) Memory pages can be marked as writeable or an
executable, but not both at once (W xor X, or DEP)

£) This prevents jumping to code placed on the stack
or heap.

® But many library/system calls can load a new binary/shell
(exec, system, popen) and libc is always in memory

£) A “return to libc” attack works by overwriting the

return address with a pointer to such a function

OS: non-executable stack

©) Memory pages can be marked as writeable or an
executable, but not both at once (W xor X, or DEP)

©) This prevents jumping to code placed on the stack
or heap.

® But many library/system calls can load a new binary/shell
(exec, system, popen) and libc is always in memory

o) A “return to libc” attack works by overwriting the

return address with a pointer to such a function

©) More general: “return-oriented programming” (ROP)

Address space...

Address space layout of a typical Linux/x86-64 process:

stack l ox7fffffffefff
%rsp.
Shared Libraries i
0x7ffff7a00000
Heap
Lo%ded Data Segment T
exec Code Segment
(unused)

... layout randomization

Address space layout randomization (ASLR) randomizes:

) Stack location (always): hard to find the right
address on stack to jump to

©) Heap location (often): hard to find address of heap
buffer to stash shellcode

©) Shared libraries (often). hard to find address of libc

£) Code/data segments (sometimes): hard to find
address of existing code

ASLR problems

£) 32-bit addresses are easy(ish) to guess (w/big NOP
sled)

£) Legacy code can prevent relocating libraries/code
segment

©) Relative offsets are maintained (for ret2libc/ROP)

©) Linux default does not relocate code/data segments

©) Uninitialized read, format string, interpreter bugs can
leak secrets (ASLR offsets, also cookies)

Hardware: PAC

£) "64-bit” architectures don't actually use all the bits
in an address (e.g., 48 bits on x86-64, ARM-64)

©) ARMv8 idea: use top 3-24 bits of code pointers to
hold a “Pointer Authentication Code” (PAC).

©) Processor using PACs has instructions to set a
code, and check a code before jumping there.

©) Each PAC is specific to a program context and a
key. Used in recent versions of i0S/macOS.

Spot the bug(s)

void checkpassword(FILE *pufile) {
int taunt = 1;
char password[10], input[10];
char *inp = input;
fgets(password,9,pufile);
password[8]="\0";
printf ("Enter password (at most 8 letters):");
do {
*inp = getchar();
} while (xinp++ != ’\n’);
input[8] = °\0’;
if (strncmp(input,password,8) == 0) taunt = 0;
if (taunt) {
printf("Loser, the password is definitely mot ");
printf (input);
} else return success();

