
CSci 4271W
Development of Secure Software Systems

Day 8: Defensive programming 1
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Last time: bugs and attacks
void checkpassword(FILE *pwfile) {

int taunt = 1;
char password[10], input[10];
char *inp = input;
fgets(password,9,pwfile);
password[8]='\0';
printf("Enter password (at most 8 letters):");
do {

*inp = getchar();
} while (*inp++ != '\n');
input[8] = '\0';
if (strncmp(input,password,8) == 0) taunt = 0;
if (taunt) {

printf("Loser, the password is definitely not ");
printf(input);

} else return success();
}

Outline

Carry-over from last lecture

Defensive coding

Announcements intermission

Defensive coding, cont’d

Defensive programming

How do we design and write programs so that security bugs are less
likely to happen in the first place?
Like in threat modeling, it’s important to ask “what could go wrong” in
a program and write code that plans for it.

Undefined behavior: what can go wrong with the compiler?

Input validation: what can go wrong with our inputs?

Safe call-outs: what can go wrong when calling out?

Safe return values: what can go wrong with my outputs?

Undefined behavior
In C/C++, some operations have undefined behavior: an execution that
would lead to one of these operations can behave arbitrarily. Examples
include:

Dereferencing a null pointer

Reading uninitialized memory (stack, malloc, fields. . .)

Signed integer overflow, including shifts and casts

Using non-aligned or dangling pointers

Void return from non-void function

Null pointers

Refresher: which of these is a null pointer dereference?
char *x = NULL;

*x = '1';

char *x = NULL;

if (x==NULL) return;

int *x = NULL;

x[0] = 42;

void *p = NULL;

void **q = &p;

std::string *s = NULL;

s->push_back('a');

char *x = NULL;

if (!x) return;

(Signed) integer overflow
. . . is tricky to test for without incurring undefined behavior:

int x, y; // ...

if (x>=0 && y>=0 && x+y < x)

// error...

int x, y;

// Want to know if x+y > INT MAX

if (x>=0 && y>=0 && x > (INT MAX - y))

// error...

Consider compiling with -fsanitize=integer

(Signed) integer overflow

. . . is tricky to test for without incurring undefined behavior:

int x, y; // ...

if (x>=0 && y>=0 && x+y < x)

// error...

int x, y;

// Want to know if x+y > INT MAX

if (x>=0 && y>=0 && x > (INT MAX - y))

// error...

Consider compiling with -fsanitize=integer

(Signed) integer overflow

. . . is tricky to test for without incurring undefined behavior:

int x, y; // ...

if (x>=0 && y>=0 && x+y < x)

// error...

int x, y;

// Want to know if x+y > INT MAX

if (x>=0 && y>=0 && x > (INT MAX - y))

// error...

Consider compiling with -fsanitize=integer

Non-defensive example 1

char *double_str (char *s) {

int len = strlen(s);

char *p = malloc(2*len+1);

strcpy(p,s);

strcpy(p+len,s);

return p;

}

Input validation

Check all inputs for safe/sane values.

Default to reject/deny, and only allow known-safe
values.
Do test with known-bad values!

Integer types: 0, 1, -1, INT MAX, INT MIN, . . .
Strings: NULL, "", non-NUL terminated, long strings,
unprintable characters, newlines, %n, . . .
Fuzz your interface to find other cases

Input sources

Command line inputs

Function arguments / global variables

File contents

Environment variables

Network / IPC

(Wheeler has good list of considerations for common
types)

Non-defensive example 2
int main(int argc, char **argv) {

string greeting("Hello ");
if (!strcmp(argv[0],"hello")) greeting.append(getenv("USER"));
else

cin >> greeting;
int nope = greeting.size();
if (greeting.find('|') == nope && greeting.find(';') == nope){

greeting.insert(0,"/bin/echo ");
system(greeting.data());

} else
cout << "You can't fool me!" << endl;

return 0;
}

Outline

Carry-over from last lecture

Defensive coding

Announcements intermission

Defensive coding, cont’d

Important dates next week

Homework 2 is due next Tuesday the 18th
Today’s defensive programming material should prepare
your for questions 2–4
Homework 1 grades are just waiting for my final checks

Midterm 1 will be in class next Thursday the 20th
Open book, open notes, questions similar to homework
and short answers
More detailed discussion of the midterm on Tuesday

Project 1 starting up

Instructions on the public web site, vulnerable code
on github.umn

The project is time-consuming so get started early
Groups of 2 or 3 recommended

One section draft per student will be due 3/4

Final due date is after spring break, 3/18

Outline

Carry-over from last lecture

Defensive coding

Announcements intermission

Defensive coding, cont’d

Safe calling (programs)

When calling out to another program:

Use the program’s full path

Watch out for “metacharacters” that are special to the shell

Avoiding the shell avoids this risk, but is cumbersome and
less portable

Watch out for characters the program will interpret differently

Avoid interactive programs

Results from the program are inputs to yours: validate!

Safe calling (functions)

System and library calls: check results!

Calls that return pointers: check for NULL

Check error codes for system calls:
open, write, read. . .

Check errno for calls that set it

Catch exceptions

Use “safer” libraries/APIs where you can: C++ string vs.
char *, well-tested libraries, standard collections, . . .

Non-defensive example 3

char *username = getenv("USER");

char *buf = malloc(strlen(username)+7);

sprintf(buf, "mail %s", username);

FILE *f = popen(buf, "w");

fprintf(f, "Hi.\n");

fclose(f);

Outputs

The outputs of a program can potentially cause
information disclosure, sometimes leading to EoP.

“The third letter of your password is wrong”

Query FAILED with output. . .

Feedback and errors

Examples that may reveal too much information:

Displaying incorrect password/secret

Returning program line/check causing an error

Returning “hidden” information in comments or fields

Returning error message from a library or external
program

Non-defensive example 4
try:

connect_to_db(dbuser, dbpassword)
except Exception as e:

return str(e)

if user not in userlist:
return "User not found!"

if hashlib.sha256(password) != pw_hash_list[user]:
return "Incorrect password!"

if account_number not in accounts[user]:
return "Account number " + account_number + " not found!"

do_the_thing(user,account)

Formatting and encoding

Will the consumer of output be another program?
What text encoding should be used?
Are tags, control characters, etc., important?

Don’t use user-specified formats
Especially not format strings
Limited choices can be safe

