
CSci 4271W
Development of Secure Software Systems

Day 9: Defensive programming 2
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Outline

Defensive coding

Defensive design principles

Midterm, other announcements

More buggy examples

Defensive programming

How do we design and write programs so that security bugs are less
likely to happen in the first place?
Like in threat modeling, it’s important to ask “what could go wrong” in
a program and write code that plans for it.

Undefined behavior: what can go wrong with the compiler?

Input validation: what can go wrong with our inputs?

Safe call-outs: what can go wrong when calling out?

Safe return values: what can go wrong with my outputs?

Outputs

The outputs of a program can potentially cause
information disclosure, sometimes leading to EoP.

“The third letter of your password is wrong”

Query FAILED with output. . .

Feedback and errors

Examples that may reveal too much information:

Displaying incorrect password/secret

Returning program line/check causing an error

Returning “hidden” information in comments or fields

Returning error message from a library or external
program

Formatting and encoding

Will the consumer of output be another program?
What text encoding should be used?
Are tags, control characters, etc., important?

Don’t use user-specified formats
Especially not format strings
Limited choices can be safe

Outline

Defensive coding

Defensive design principles

Midterm, other announcements

More buggy examples

Defensive programming (2)

General guidelines. . .

CODeMAP (Saltzer and Schroeder)

Deploy defense in depth

Separate data and control

Test error-handling code



Saltzer and Schroeder

Don’t forget your CODeMAP:
C.omplete mediation
O.pen design

Safe De.faults
M.echanism

Psychological A.cceptability
P.rivileges

Review at: https://shostack.org/blog/the-security-principles-of-saltzer-and-schroeder

Complete mediation

Check every access to every object. . .
Race conditions (e.g., TOCTTOU):

Employ locks, mkstemp, atomic filesystem operations. . .

Caching

Server-side vs. client-side input validation

Open design

No “security by obscurity”: the security of a system
should not depend on secrecy of the design. Examples:

NT password file in registry: format
reverse-engineered

“Backdoors” hidden in code: found with debuggers

“Roll-your-own” cryptography

Being open source can improve security, but is not a
guarantee (c.f. GnuPG, X Windows, . . . )

Safe Defaults

A system should default to a secure state.

Deny read/write by default

No auto-execute

Compare: fail-safe, fail-stop

Users will notice if the application fails, but attackers
don’t inform devs/ops if security fails.
Image source: https://www.tsb.gc.ca/eng/lab/rail/2013/lp1872013/LP1872013.html
Transportation Safety Board of Canada, TSB Laboratory Report LP187/2013, Fig. 4

Mechanism

Economy of Mechanism: Each edge is a bug opportunity.
Minimize edges.
Least Common Mechanism: Minimize complexity of
high-degree components.

Psychological Aceptability

Security mechanisms must not:

Prevent users from doing their work

Force users to make important choices

Privilege

Least Privilege: A process/entity should have only
have access to the resources it needs to function

Separation of Privilege: Distribute important roles
between multiple processes or entities

Defense in depth

Multiple, orthogonal defenses decrease the probability of
security failures:

Belt and suspenders
ASLR + CFI + Stack Cookies + DEP
Network firewall and software firewall

Image source: Francis Grose, “The Antiquities of England and Wales Vol I” (1783)



Separate data and control

Avoid embedded code/scripts

Don’t serialize/interpret across system components

Send query fields to stored procedures

Send arguments to compiled programs

Test error handling code

if rare_error_condition:
s1 = statement(1)
s2 = action(s1)
...# how do I test this?

else:
compute_as_normal()
...

!

def handle_error(state):
state.s1 = statement(state)
state.s2 = action(state)
...

if rare_error_condition:
handle_error(state)

else:
compute_as_normal()
...

Outline

Defensive coding

Defensive design principles

Midterm, other announcements

More buggy examples

Upcoming assignments

Homework 2 is due tonight

Homework 3 will be out soon, mostly about OS
security

Have you reached out to groups and started looking
at Project 1?

Midterm 1 information
In class (normal time and place) this Thursday
Open book, open notes, any paper materials OK, but
no electronics
Pencil or erasable pen recommended
Sorry, no sample old midterms released (changing
format)
Structure:

3 homework-like questions (50 points total)
10 short-answer questions (50 points total)

Midterm 1 topics

Covers from the beginning of the course through today

Threat models, risk assessment

DFDs and other diagrams

STRIDE and other threat modeling

Memory corruption attacks and mitigations

Defensive programming and design

Outline

Defensive coding

Defensive design principles

Midterm, other announcements

More buggy examples

Non-defensive example 3

char *username = getenv("USER");

char *buf = malloc(strlen(username)+7);

sprintf(buf, "mail %s", username);

FILE *f = popen(buf, "w");

fprintf(f, "Hi.\n");

fclose(f);



Non-defensive example 4
try:

connect_to_db(dbuser, dbpassword)
except Exception as e:

return str(e)

if user not in userlist:
return "User not found!"

if hashlib.sha256(password) != pw_hash_list[user]:
return "Incorrect password!"

if account_number not in accounts[user]:
return "Account number " + account_number + " not found!"

do_the_thing(user,account)

Non-defensive example 5
int makedir (char *newdir); {

int len = (int)strlen(newdir);
char *p, *buffer = (char*)malloc(len+1);
strcpy(buffer,newdir);
if (buffer[len-1] == '/') buffer[len-1] = '\0';
if (mkdir(buffer,0775) == 0) goto done;
p = buffer+1;
while (1) {

char hold;
while(*p && *p != '/') p++;
hold = *p; *p = 0;
mkdir(buffer, 0775);
if (hold == 0) goto done;
*p++ = hold; }

done: free(buffer);
return 1; }


