
CSci 4271W
Development of Secure Software Systems

Day 11: OS security: access control
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Operating systems

The goal of an operating system is to provide a
uniform platform for programs to access system
resources.

The security goal of an operating system is to
prevent processes from inappropriately accessing
resources used by other processes.

In order to do this, the OS must also protect itself
from the processes it manages.

Operating Systems

An OS broadly provides three kinds of security functions:

Authentication: linking processes to users

Access Control: making decisions about access to
resources

Protection: enforcing access control policies

Outline

OS security overview

OS security: access control

Announcements, midterm debrief

Access control
The operating system mediates access requests
between subjects and objects

Access control matrix

Objects
Obj1 Obj2 Obj3 Obj4 � � � ObjN

S
ub

je
ct

s

Subj1 rwl - - rl � � � wx
Subj2 rw rw - - lx
Subj3 - l x rw -
...

SubjM rl wl rl rw � � � rx

Access control matrix, storage

The matrix is implemented through a combination of
subject-stored data and object-stored data

Unix subjects

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

Unix subjects

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

UIDs:
UID:username map: /etc/passwd
Real UID (ruid):

Inherited from parent process
Effective UID (euid):

Determines access
Saved UID (suid):

Set after EUID is changed
(FS UID: Linux-only, obsolete)

Unix subjects

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

GIDs:
UID:GID map: /etc/passwd
groupname:GID:members map:

/etc/group

Effective GID (egid):
Allows access

Real GID, Saved GID: analogous to UID
Supplementary GIDs:

Also allow access

Unix subjects

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

PCAPs:
Set of capabilities that are subsets of
root

CAP DAC OVERRIDE

(skip R/W/X permission checks)
CAP FOWNER (owner on all files)
CAP KILL (signal any process)
CAP SYS TIME (set clock)
CAP SYS ADMIN (catchall)

Unix objects

Primarily file system ob-
jects, like:
Files
Directories
Device files
Named pipes

Every object has:
owner UID and permissions
group GID and permissions
“other” permissions
possible set(uid/gid)

Permissions include:
(r)ead, (w)rite, e(x)ecute
Only one of the owner, group, or other
permissions apply

Directory permissions

Same R/W/X bits, slightly different interpretation
Read: list contents (e.g., ls)
Write: add or delete files
Execute: traverse (“search”)

X is needed on every level of parent directory

R and W only apply at one level

X but not R means: have to know the names

Permission examples
Suppose we have:

object owner group permissions
/ 0 0 d rwx r-x r-x
/path 101 100 d --x --x --x
/path/f1 101 100 - -wx -wx --x

subject euid gid request
proc1 101 100 open("/path/f1",O_RDWR)
proc1 101 100 exec("/path/f1",...)
proc2 1001 100 chdir("/path")
proc3 1001 100 open("/path/f1",O_WRONLY)

Which requests will succeed?

UID management

A process with UID 0 is a “superuser” or root process and
generally can access all objects and change UID/GIDs.

Processes created by fork inherit parent’s UID/GIDs

If a file F has the setuid bit on, a successful exec of F will set the
process UID to the file’s UID

And respectively setgid with GID

Processes can manipulate UIDs using set*uid system calls:

seteuid(newid) will succeed if newid 2 fsuid; ruidg

or euid = 0

Saved UID temporary change

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Outline

OS security overview

OS security: access control

Announcements, midterm debrief

Coming up next week

Homework 3 due Tuesday, finished relevant material
today

One-per-person section drafts due Thursday

More project-related

“No BS” policy: don’t claim vulnerabilities you haven’t
confirmed
The BCBMC binary is compiled with standard
mitigations

For full credit, your PoC exploits must work against these
Attacks may use multiple vulnerabilities

Now available, Piazza is the best place for project
questions

Midterm score distribution
I’ve made a +5 point difficulty adjustment on Canvas

Before adjust.: After:

5 | * 5 | *

6 | **** 6 | **

7 | * 7 | ***

8 | ** 8 | *

9 | ** 9 | **

10 | *

Mean: 73 Mean: 78

Median: 68 Median: 73

Q2: defensive programming

(Code shown outside slides)

Q3: memory corruption

(Code shown outside slides)

