CSci 427\W
Development of Secure Software Systems
Day 1. OS security: access control

Stephen McCamant (he/him)
University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Operating systems & @ =

£) The goal of an operating system is to provide a
uniform platform for programs to access system
resources.

©) The security goal of an operating system is to
prevent processes from inappropriately accessing
resources used by other processes.

©) In order to do this, the OS must also protect itself
from the processes it manages.

Operating Systems

An OS broadly provides three kinds of security functions:

Authentication: linking processes to users

+ Access Control: making decisions about access to
resources

o
/' Protection: enforcing access control policies

Outline

OS security: access control

Access control

The operating system mediates access requests
between subjects and objects

hecess S
Subject oS
Allow/Deny

Processes, I\D/Ietmo;’y, t
o ata structures,

Applications, Operation: read, write, execute, Code,

Users, list, delete, allocate, lock, Files,

append, transfer, ...

Devices...

Communications,

Access control matrix

Objects
Objl | Obj2 | Obj3 | Obj4 | - - - | ObjN
Subjl | rwl | - - rl <o WX
£ Suj2 [rw [w |- |- Ix
Llsu3 |- I X |rw -
@l |
SubjM [l |wl Tl w | ---[rx

Access control matrix, storage

The matrix is implemented through a combination of
subject-stored data and object-stored data

— 3

Identifiers, '
Capabilities Access Control List

other Capabilities

Unix subjects

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

Unix subjects

UDs:
UD.username map: /etc/passwd
Real UID (ruid):

Inherited from parent process
Effective UID (euid):

Determines access
Saved UID (suid).

Set after EUID is changed
(FS UID: Linux-only, obsolete)

Unix subject = process.

Each process stores:

Several 32-bit user IDs
A list of 32-bit group IDs

A set of capabilities

Unix subjects

GIDs:
UID:GID map: /etc/passwd
groupname:GID:members map:
/etc/group
Effective GID (egid):
Allows access
Real GID, Saved GID: analogous to UID
Supplementary GIDs:
Also allow access

Unix subject = process.
Each process stores:
Several 32-bit user IDs
A list of 32-bit group IDs
A set of capabilities

Unix subjects

PCAPs:
Set of capabilities that are subsets of
root
CAP_DAC_OVERRIDE
(skip R/W/X permission checks)

Unix objects

Primarily file system ob- | Every object has:

CAP_FOWNER (owner on all files)
CAP KILL (signal any process)
CAP_SYS_TIME (set clock)
CAP_SYS_ADMIN (catchall)

jects, like: owner UID and permissions
Files group GID and permissions
Directories “other” permissions

Device files possible set(uid/gid)
Named pipes Permissions include:

(r)ead, (w)rite, e(x)ecute
Only one of the owner, group, or other
permissions apply

Directory permissions

£) Same R/W/X bits, slightly different interpretation

® Read: list contents (eg, 1s)
® Write: add or delete files
® Execute: traverse (“search”)

£) X is needed on every level of parent directory
© R and W only apply at one level
©) X but not R means: have to know the names

Permission examples
Suppose we have:

object owner group permissions

/ 0 0 d rwx r-x r-x

/path 101 100 d —-x --x ——x

/path/f1 101 100 - -WX -WX —-X

subject euid gid request

procl 101 100 open("/path/f1",0_RDWR)
procl 101 100 exec("/path/f1",...)
proc2 1001 100 chdir("/path")

proc3 1001 100 open("/path/f1",0_WRONLY)

Which requests will succeed?

UID management

) A process with UD O is a “superuser” or root process and
generally can access all objects and change UID/GIDs.

) Processes created by fork inherit parent's UID/GIDs

) If a file F has the setuid bit on, a successful exec of F will set the

process UID to the file's UID
® And respectively setgid with GID

) Processes can manipulate UIDs using set*uid system calls:

® seteuid(newid) will succeed if newid € {suid, ruid}

or euid =0

Saved UID temporary change

EUIDO ruid 101

owner 0 read/write|

i=getruid();
read/write| seteuid(i); | ruid 101
~———~open(); euid 101

owner 101
AW i
data... suid 0

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

Attacker

(uid 1= 0)

0s
Ipd
(uid = 0)

Confused deputy

When a process needs some privileges (e.g., of a UD),
and can be confused into using other privileges the UID.

1n -s /etc/passwd sfile

Attacker

(uid 1= 0)

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

1n -s /etc/passwd sfile

ile ->
Attacker 0s sfile -> /etc/passwd

(uid 1= 0)

Confused deputy

When a process needs some privileges (eg., of a UD),
and can be confused into using other privileges the UID.

1n -s /etc/passwd sfile

ile ->
Attacker 0s sfile -> /etc/passwd

(uid 1= 0) lpr -s sfile

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

1n -s /etc/passwd sfile

ile ->
Attacker W sfile -> /etc/passwd

(uid 1= 0) 1pr -s sfile

/tmp/Ipspool -> sfile

Ipd] e
(uid =0)

Confused deputy

When a process needs some privileges (e.g., of a UD),
and can be confused into using other privileges the UID.

1n -s /etc/passwd sfile

ile ->
Attacker [T} sfile -> /etc/passwd

(uid 1= 0) lpr -s sfile

/tmp/Ipspool -> sfile

177 [[——
lpr mypw (uid = 0)

Confused deputy

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

1n -s /etc/passwd sfile

ile ->
Attacker [T] sfile -> /etc/passwd

(uid 1= 0) lpr -s sfile

/tmp/Ipspool -> sfile

Ipd
trmpw | (uid=0) /etc/passwd = mypw

Outline

Announcements, midterm debrief

Coming up next week

©) Homework 3 due Tuesday, finished relevant material
today

£) One-per-person section drafts due Thursday

More project-related

£) "No BS” policy: don't claim vulnerabilities you haven't
confirmed
£) The BCBMC binary is compiled with standard
mitigations
® For full credit, your PoC exploits must work against these
® Attacks may use multiple vulnerabilities
©) Now available, Piazza is the best place for project
guestions

Midterm score distribution
I've made a +5 point difficulty adjustment on Canvas

Before adjust.: After:
5 | x* 5 | =
6 | *kkx 6 | *xx
71 % T | owwk
8 | *x 8 | *
9 | xx 9 | *xx
10 | *

Mean: 73 Mean: 78

Median: 68 Median: 73

Q2: defensive programming

(Code shown outside slides)

Q3: memory corruption

(Code shown outside slides)

