CSci 4271W Development of Secure Software Systems Day 11: OS security: access control

Stephen McCamant (he/him) University of Minnesota, Computer Science & Engineering

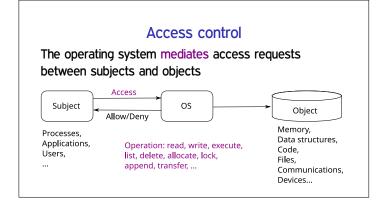
Based in large part on slides originally by Prof. Nick Hopper Licensed under Creative Commons Attribution-ShareAlike 4.0

Operating systems 👌 🚳 满 📢

- The goal of an operating system is to provide a uniform platform for programs to access system resources.
- The security goal of an operating system is to prevent processes from inappropriately accessing resources used by other processes.
- In order to do this, the OS must also protect itself from the processes it manages.

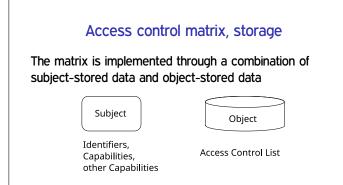
Operating Systems

An OS broadly provides three kinds of security functions:


- Authentication: linking processes to users
- Access Control: making decisions about access to resources
- Protection: enforcing access control policies

Outline

OS security overview


OS security: access control

Announcements, midterm debrief

Access control matrix

				Objec	cts		
		Obj1	Obj2	Obj3	Obj4		ObjN
	Subj1	rwl	-	-	rl		wx
cts	Subj2	rw	rw	-	-		lx
Ъ	Subj3	-	1	Х	rw		-
Subjects	:					·	:
	SubjM	rl	wl	rl	rw		rx

Unix subject = process. Each process stores: Several 32-bit user IDs A list of 32-bit group IDs A set of capabilities

Unix subjects

Unix subject = process. Each process stores: Several 32-bit user IDs A list of 32-bit group IDs A set of capabilities

UIDs: UID:username map: /etc/passwd Real UID (ruid): Inherited from parent process Effective UID (euid): Determines access Saved UID (suid):

Set after EUID is changed

(FS UID: Linux-only, obsolete)

Unix subjects

Unix subject = process. Each process stores: Several 32-bit user IDs A list of 32-bit group IDs A set of capabilities

GIDs: UID:GID map: /etc/passwd groupname:GID:members map: /etc/group Effective GID (egid): Allows access

Real GID, Saved GID: analogous to UID Supplementary GIDs: Also allow access

Unix subjects

Unix subject = process. Each process stores: Several 32-bit user IDs A list of 32-bit group IDs A set of capabilities

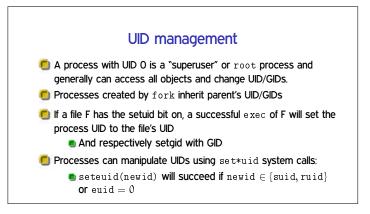
PCAPs: Set of capabilities that are subsets of root CAP_DAC_OVERRIDE (skip R/W/X permission checks) CAP_FOWNER (owner on all files) CAP_KILL (signal any process) CAP_SYS_TIME (set clock) CAP_SYS_ADMIN (catchall)

Unix objects

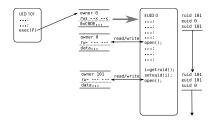
Primarily file system ob- | Every object has: owner UID and permissions iects, like: Files group GID and permissions Directories "other" permissions Device files possible set(uid/gid) Named pipes Permissions include: (r)ead, (w)rite, e(x)ecute Only one of the owner, group, or other permissions apply

Directory permissions

Same R/W/X bits, slightly different interpretation

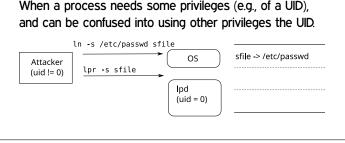

- Read: list contents (e.g., 1s)
- Write: add or delete files
- Execute: traverse ("search")
- X is needed on every level of parent directory
- R and W only apply at one level
- X but not R means: have to know the names

Permission examples


Suppose we have:

object	owner	group	permissions
/	0	0	d rwx r-x r-x
/path	101	100	dxxx
/path/f1	101	100	wx -wxx
subject proc1 proc1 proc2 proc3	euid 101 101 1001 1001	gid 100 100 100 100	

Which requests will succeed?



Saved UID temporary change

Confused deputy When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.	Confused deputy When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.
Attacker (uid != 0) OS Ipd (uid = 0)	Attacker (uid != 0)
Confused deputy	Confused deputy
When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.	When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.

-s /etc/passwd sfile	sfile -> /etc/passwd
lpd (uid = 0)	
	OS Ipd

Confused deputy	Confused deputy
When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.	When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.
In -s /etc/passwd sfile	In -s /etc/passwd sfile sfile -> /etc/passwd Attacker Ipr -s sfile /tmp/Ipspool -> sfile Ipr mypw Ipd /tmp/Ipspool -> sfile

sfile -> /etc/passwd

/tmp/lpspool -> sfile

/etc/passwd = mypw

Confused deputy

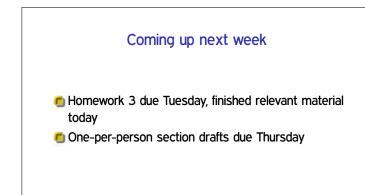
os

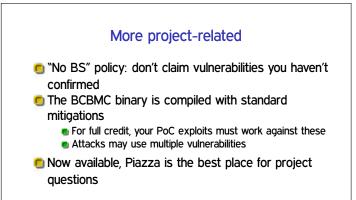
. (uid = 0)

lpd

When a process needs some privileges (e.g., of a UID), and can be confused into using other privileges the UID.

ln -s /etc/passwd sfile


<u>lpr -</u>s sfile


lpr mypw

Attacker

(uid != 0)

Midterm score distribution

I've made a +5 point difficulty adjustment on Canvas

Before adjust.:	After:
5 *	5 *
6 ****	6 **
7 *	7 ***
8 **	8 *
9 **	9 **
	10 *
Mean: 73	Mean: 78
Median: 68	Median: 73

Q2: defensive programming

(Code shown outside slides)

Q3: memory corruption

(Code shown outside slides)