
CSci 4271W
Development of Secure Software Systems

Day 12: OS security: isolation and protection
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Operating systems

The goal of an operating system is to provide a
uniform platform for programs to access system
resources.

The security goal of an operating system is to
prevent processes from inappropriately accessing
resources used by other processes.

In order to do this, the OS must also protect itself
from the processes it manages.

Operating systems

An OS broadly provides three kinds of security functions:

Authentication: linking processes to users

Access Control: making decisions about access to
resources

Protection: enforcing access control policies

Outline

OS security overview

Basic isolation mechanisms

Announcements intermission

More tools for isolation

Midterm debrief, cont’d

Isolation

Isolation and protection, the basic mechanisms by which
the OS implements security controls, usually rely on
hardware mechanisms.
Hardware access control consists of two mechanisms:

Address translation

Supervisor mode/rings

Address translation
Processes access memory using virtual addresses that
are translated into physical addresses by the MMU/page
table:

The OS manages the translation so that each process
sees only its own data.

Modes/rings

On modern processors, user programs are prevented
from changing page tables or using physical addressing
by using two or more protection “modes” or “rings”

Using rings for isolation

The global descriptor table holds the
ring number for each memory
segment, sr.
The status register holds the current
ring level pr. If request has sr < pr

a fault is raised.
MMU translation tables, device
buffers, etc. are ring 0.

Access to system resources requires a system call.

Moving inward

The OS maintains an interrupt table (exception vector)
mapping interrupts to handlers

Typical interrupts include traps,
I/O, timers, page faults,
sysenter/syscall/svc.

IRQ address
0x0E 0xC032FF00

0x80 0xC0108328

The interrupt causes the handler to be called at a lower
ring level. The handler resets the status register on exit.

Rings for Unix

Typical Unix implementations make use of just two rings:

System calls use an exception to enter ring 0, check
access, allocate resources, return to user mode.

Outline

OS security overview

Basic isolation mechanisms

Announcements intermission

More tools for isolation

Midterm debrief, cont’d

Upcoming assignments

Homework 3 due tonight, submission now available

Section drafts for project 1 due Thursday

Piazza has lab Q&A, project clarifications,
find-a-teammate area

Outline

OS security overview

Basic isolation mechanisms

Announcements intermission

More tools for isolation

Midterm debrief, cont’d

Mandatory access controls

Operating systems provide or deny access to
resources based on access control policies.

Regular file permissions are discretionary access
controls — they are set, and can be changed, by
subjects (using chmod, etc.).

Many OSes provide mechanisms for mandatory
access controls which cannot be changed by
subjects.

DAC vs. MAC

DAC MAC

Controlled by owner Controlled by admin

Users are trusted Avoid trusting users

All processes with the same UID
have the same access

Processes have user and file-
specific labels

Examples of modern MAC frameworks: SELinux (used on
Android/ChromeOS) and AppArmor (Ubuntu and others)

AppArmor example
AppArmor uses a “profile.”
For a (set of) executable(s):

What files can be
accessed?

What permissions do
child processes have?

What capabilities can
the process have?

/usr/sbin/tcpdump {
capability net_raw,
capability setuid,
capability dac_override,
network raw,
network packet,
capability sys_module, # for -D
@{PROC}/bus/usb/ r,
@{PROC}/bus/usb/** r,
audit deny @{HOME}/.* mrwkl,
audit deny @{HOME}/.*/ rw,
audit deny @{HOME}/.*/** mrwkl,
@{HOME}/ r,
@{HOME}/** rw,
/usr/sbin/tcpdump r,

}

Stronger isolation

OSes have many features by which processes interact:

The filesystem

Interprocess communication

Networking

Devices

Other kernel data structures

Other isolation mechanisms apply to some or all of these

Filesystem isolation

The system call chroot("/path") resets the root
directory of a process file system to /path.

A chrooted process can’t access
files outside of its directory
subtree.
All required libraries, config files,
and binaries must be present in
the subtree.

Filesystem isolation

The system call chroot("/path") resets the root
directory of a process file system to /path.

A chrooted process can’t access
files outside of its directory
subtree.
All required libraries, config files,
and binaries must be present in
the subtree.

Filesystem isolation

The system call chroot("/path") resets the root
directory of a process file system to /path.

A chrooted process can’t access
files outside of its directory
subtree.
All required libraries, config files,
and binaries must be present in
the subtree.

Calls to chroot are only allowed if euid = 0: why?

chroot limitations

A chroot can be escaped if other processes with same
UID are running, or open file descriptors refer to outside
files, or directories are moved, . . .
Partial mitigations:

setuid: set UID of chrooted process to a new UID

rlimit: limit the number of file descriptors, memory,
etc., a process can access

But the man page no longer recommends it for security

System call isolation
Linux, BSD, macOS, Windows all provide similar “sandboxing”
frameworks that can inspect/alter system calls.

On Linux, seccomp-bpf uses BPF bytecode to manipulate syscalls:

#define Allow(syscall) \
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, SYS_##syscall, 0, 1), \
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)
struct sock_filter filter[] = {
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SYSCALL_NUM_OFFSET),
Allow(brk), // allow heap extension
Allow(close), // allow closing files!
Allow(openat), // to permit openat(config_dir), etc.
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_TRAP), // or die
}

Syscall filtering pitfalls

seccomp-bpf has only limited support for filtering by
arguments, but it would be hard to do so safely anyway

Syscall filtering pitfalls

seccomp-bpf has only limited support for filtering by
arguments, but it would be hard to do so safely anyway

Race conditions:
Contents of f2 can change after
seccomp check;
If c2 = "/tmp/foo", another
process could link /tmp/foo !

/not/allowed

Syscall filtering pitfalls, cont’d

Shadowing

If allowed calls change the
process state, the sandbox
needs to “shadow” this state
to make proper judgments.

Containers

Linux “cgroup” and “namespace” features flexibly limit resource
usage and visibility between groups of processes

Applies to filesystems, processes, memory, UIDs,
networking, etc.

“Container” describes systems that build on these mechanisms
(LXC, Docker, etc.) and analogues on other systems

Containers running in different namespaces ultimately share
kernel code and devices but cannot directly interact.

Unless the kernel or containerization code have bugs!

Recall: confused deputies

When a process needs some privileges (e.g., of a UID),
and can be confused into using other privileges the UID.

(How) could AppArmor, seccomp, or containers help with
this specific example?

Outline

OS security overview

Basic isolation mechanisms

Announcements intermission

More tools for isolation

Midterm debrief, cont’d

Q2: defensive programming

(Code shown outside slides)

Q3: memory corruption

(Code shown outside slides)

