
CSci 4271W
Development of Secure Software Systems

Day 15: Networking and security:
firewalls and intrusion detection

Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Firewalls
Firewalls represent a physical/logical mechanism to
enforce a trust boundary in a networked system:

Traffic crossing the trust boundary must go through the firewall.

Firewalls
Firewalls represent a physical/logical mechanism to
enforce a trust boundary in a networked system:

Traffic crossing the trust boundary must go through the firewall.

Firewalls: why?

A firewall might be used to mitigate:

Spoofing:

stop packets that affect routing decisions,
DNS, or with forged source address from crossing

Tampering:

prevent injection of data into local flows

Information disclosure:

prevent unintended flows,
conceal network details

Elevation of privilege:

defense-in-depth against
applications with remote-to-local EoP bugs

Firewalls: why?

A firewall might be used to mitigate:

Spoofing: stop packets that affect routing decisions,
DNS, or with forged source address from crossing

Tampering: prevent injection of data into local flows

Information disclosure: prevent unintended flows,
conceal network details

Elevation of privilege: defense-in-depth against
applications with remote-to-local EoP bugs

Types of firewalls

Network layer firewalls filter packets on IP, port, and
protocol

Proxy firewalls can filter on transport or
application-layer headers

Network address translation (NAT) firewalls filter on
transport headers, hide local addresses

Software firewalls filter traffic on a local host

Packet filtering
Network layer firewalls filter packets on IP, port, and protocol

Examples: only allow TCP, UDP from external network, allow
external:* to webserver:80, allow internal:* to external:80

Packet filtering attacks

What can go wrong?

Forged external addresses

Ephemeral port scans

Stateful packet filtering

Track internally-initiated connections:

Need to maintain state for each connection (FIN, timeout,
RST, active. . .)

State sync problems can be caused by, e.g., fragments

Proxy firewalls

Send a connection through firewall software (SOCKS, HTTP):

Advantages: no state sync, can understand application level,
authentication can be used.

Disadvantages: configuration effort, computation cost, insider attacks,
. . .

Network address translation

Firewall rewrites source address and port

Lower-cost and higher flexibility than proxies, potential
state de-synchronization

Firewall tradeoffs

iptables examples (1/2)
iptables -A INPUT -p tcp -m tcp ! --tcp-flags SYN,RST,ACK SYN \

-j ACCEPT
iptables -P INPUT DROP

iptables -A INPUT -p TCP --destination-port 22 -j ACCEPT
iptables -I INPUT 1 -p udp --source-port 53 -j ACCEPT

iptables -L -n
Chain INPUT (policy DROP)

target prot opt source destination
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp spt:53
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp flags:!0x16/0x02
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

iptables examples (2/2)
iptables -I OUTPUT -p tcp -d 192.168.0.0/24 --dport 80 -j DROP

iptables -L -v # (L)ist rules, (v)erbose
Chain INPUT (policy DROP 129 packets, 20831 bytes)
pkts bytes target prot opt in out source destination
25 2644 ACCEPT udp -- any any anywhere anywhere udp spt:domain

523K 675M ACCEPT tcp -- any any anywhere anywhere tcp !SYN
1 60 ACCEPT tcp -- any any anywhere anywhere tcp dpt:ssh

Chain OUTPUT (policy ACCEPT 372K packets, 25M bytes)
pkts bytes target prot opt in out source destination

5 300 DROP tcp -- any any anywhere 192.168.0.0/24 tcp dpt:http

iptables -P INPUT ACCEPT # reset policy
iptables -F INPUT # clears chain
iptables -F OUTPUT # clears chain

Network intrusion detection

NIDSes augment the “perimeter defense” approach to
network security with a “burglar alarm”

Suspicious traffic triggers the alarm, prompting a
response

NIDS characteristics

NIDSes can be classified/evaluated by:
Error rates Against typical traffic?
Search type Known intrusions or

unknown behavior?
Type of sensors Host and/or network?
Evasion Failures against targeted attacks?

Error rates

A false positive error is when a non-intrusion raises an alarm:

Squirrel chews through sensor cable

Printer driver scans subnet for printer

User mistypes password three times

A false negative is when an intrusion does not raise an alarm.

False Positive Rate (FPR) = #FPs / #Normal Events

False Negative Rate (FNR) = #FNs / #Intrusions

Base rate problems

Suppose the BCI network has 10M network flows/day,
and 100 flows are attacks.
If BCNIDS has a 0.1% FPR, then:

How many false alarms per day?

10K

What fraction of alarms are FPs?

>99.9%

Even with 0% FNR, what FPR is needed to equally
balance FPs and TPs?

Base rate problems

Suppose the BCI network has 10M network flows/day,
and 100 flows are attacks.
If BCNIDS has a 0.1% FPR, then:

How many false alarms per day? 10K

What fraction of alarms are FPs?

>99.9%

Even with 0% FNR, what FPR is needed to equally
balance FPs and TPs?

Base rate problems

Suppose the BCI network has 10M network flows/day,
and 100 flows are attacks.
If BCNIDS has a 0.1% FPR, then:

How many false alarms per day? 10K

What fraction of alarms are FPs? >99.9%

Even with 0% FNR, what FPR is needed to equally
balance FPs and TPs?

Signature matching IDS

The misuse detection problem is to find behavior
matching known intrusions. Basic strategy:

Collect many examples of known attacks.

Divide them into groups matching a signature.

Match new flows against these signatures.

Example rule (Snort): alert tcp any any -> myip

21 (content: "site exec"; content:"%";

msg:"site exec buffer overflow attempt";)

Anomaly detection

Anomaly detection tries to identify “normal” traffic
patterns.

Traffic that does not fit these patterns causes an alarm.

Advantage: more robust to slight attack changes

Disadvantage: people do crazy things on the Internet

IDS tradeoffs

Signature Anomalies
FPs: low high
New attacks: missed “sounds fishy”
Need to know: existing attacks normal traffic

+ automated extraction - delayed response
- easy to evade - mimic attacks

- changes in normal

Network-based NIDSes

Monitoring for “network” attacks: DoS,
protocol/application bugs, worms, viruses and software.

Example: port scanning. Signature is multiple connections
to the same network in short time period.

Examples of “what can go wrong” include fragmentation,
volume of network data, “low and slow” attacks, etc.

Example: Snort

Snort is a signature-based portable open-source NIDS
with millions of downloads/installs (including at UMN OIT)

It scans packet logs, matching connections against sigs
Snort signatures are extended regular expressions that
should match many variants of an attack, for example:

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80
(msg:"WEB-ATTACKS conf/httpd.conf attempt"; nocase; sid:1373;
flow:to_server,established; content:"conf/httpd.conf"; [...])

Example: Zeek

Zeek (formerly “Bro”) is a “policy-based” NIDS that uses
scripts to monitor connection protocol state.

Zeek logs “connection events” specific to the protocols
for each connection, e.g. TCP handshake, SSH
authentication, SSH records, SSH shutdown, TCP
shutdown.

Scripts can alert when known attacks are detected or
when unusual protocol states occur.

