
CORONET: Fault Tolerance for Software Defined
Networks

Hyojoon Kim
Georgia Institute of Technology

joonk@gatech.edu

Mike Schlansker
HP Labs, Palo Alto

mike.schlansker@hp.com

Jose Renato Santos
HP Labs, Palo Alto

joserenato.santos@hp.com

Jean Tourrilhes
HP Labs, Palo Alto

jean.tourrilhes@hp.com

Yoshio Turner
HP Labs, Palo Alto

yoshio turner@hp.com

Nick Feamster
University of Maryland – College Park

feamster@cs.umd.edu

Abstract—Software Defined Networking, or SDN, based net-
works are being deployed not only in testbed networks, but
also in production networks. Although fault-tolerance is one
of the most desirable properties in production networks, there
are not much study in providing fault-tolerance to SDN-based
networks. The goal of this work is to develop a fault tolerant
SDN architecture that can rapidly recover from faults and scale
to large network sizes. This paper presents CORONET, a SDN
fault-tolerant system that recovers from multiple link failures in
the data plane. We describe a prototype implementation based
on NOX that demonstrates fault recovery for emulated topologies
using Mininet. We also discuss possible extensions to handle
control plane and controller faults.

I. INTRODUCTION

The Software Defined Networking paradigm advocates us-
ing a logically centralized controller that makes traffic for-
warding decision while local switches are responsible for per-
forming packet forwarding in the data plane, thus separating
the control plane from the physical data plane. SDN-based
networks are increasingly been deployed in testbed as well
as production networks. For example, Google presented its
deployment of OpenFlow, the most popular protocol for SDN,
on Google’s intercontinental WAN network at the OpenFlow
Networking summit in April, 2012 [7].
Although the community has explored a large space about

what kind of new functionalities SDN can deliver, there has
been little discussion on how to deal with an age-old yet
common problem in computer networks: network failures.
Network failure, such as network device failures of link
disconnections1, can obstruct normal traffic forwarding even
if there is an alternate path in the network. However, the
field lacks sufficient research and experience in building fault-
tolerant SDN-based networks. Maulik Desai et al. explored
how to cope with link failures in SDN-based networks, how-
ever the system does not completely recover from faults [1].
PortLand [5] does recover from link failures, but is restricted
to multi-rooted tree topologies.
There are three fault domains in SDN-based networks.

(1) Data plane, where a switch or link fails, (2) control

plane, where the connection between the controller and switch
fails, and (3) controller, where the controller machine fails.

This work plans to address these three fault domains but
has initially focused on building a fault-tolerant SDN-based
solution for data plane faults. The main challenges on building
a fault-tolerant system based on SDN are:

• Existing solutions from legacy networks do not work

out-of-the-box in SDN networks. Running existing so-
lutions that normally operate on legacy networks, such as
rapid spanning tree protocol, alongside a SDN controller
application do not work properly without careful planning
or extensive modification. This is primarily because two
control planes coexist yet are decoupled from each other,
without any interaction or information exchange between
them.

• Despite of advantages, pure SDN-based solutions
are not efficient. In SDN-based networks, the central
controller can collect information from each network
element, possessing a global knowledge of the network.
With global information, the controller can run central-
ized algorithms that are potentially more efficient than
distributed algorithms that have limited information in
case of failures. However, OpenFlow SDN is a flow-based
solution where potentially every first packet has to consult
the controller for forwarding decision. This does not scale
if the number of hosts increases because the number of
unique flows can grow non-linearly. As a consequence,
the number of forwarding rules that need to be modified
to recover from a failure can be very large and prolong
recovery time.

II. CORONET: FAULT TOLERANCE FOR SDN

CORONET, COntroller based RObust NETwork, is a scal-
able and efficient fault tolerant system with multipath support.
CORONET has the following properties:

• Fast recovery. CORONET recovers from switch/link
failures in a sub-second timescale after it detects a fault.

• Scalable to large networks. As network size increases,
the number of flow table entries or number of control
messages remains manageable.

1Network failures are caused by many reasons, e.g., a software bug in
network devices or misconfiguration by operators. This paper limits the cause
to be device failures or link disconnections in the network.978-1-4673-2447-2/12/$31.00 c© 2012 IEEE

Fig. 1: CORONET Architecture.

• Multipath routing. CORONET makes use of multiple
alternate routing paths in the network.

• Works with arbitrary networks. CORONET works with
any network topology, including fat tree, clique, and mesh
topologies.

• Single control plane. The central controller is the only
entity that makes forwarding decisions.

CORONET runs an efficient centralized algorithm in the
controller with global knowledge of the up-to-date network
status, as opposed to distributed algorithms that have limited
information. CORONET uses local switch mechanisms for
tasks that do not require global knowledge. For example,
packet forwarding is primarily performed by VLAN mech-
anism implemented in local switches. Failure detection and
topology discovery also relies on local switch mechanisms
such as Link Layer Discovery Protocol, or LLDP. Hence,
CORONET is able to support full data forwarding rate with
minimized control traffic with fast failure detection. CORO-
NET uses packet classification at edge switches to map traffic
to VLANs, which can be programmed using OpenFlow API.

A. Architecture

Figure 1 shows the architecture of CORONET. The con-
troller comprises four modules that are responsible for per-
forming specific tasks.
The Topology discovery module periodically collects topol-

ogy information and receives asynchronous events upon
link/switch failure. The module ensures that CORONET has
up-to-date information of network topology status. The Route

planning module calculates multiple routing paths based on
the topology information. Routing paths are computed by
the VLAN growing algorithm, which creates multiple link-
disjoint shortest routing paths using Dijkstra’s shortest path
algorithm. The link-disjoint property provides better reliability
by minimizing the number of affected routing paths when a
link fails. The VLAN switch configuration module configures
multiple switch ports with relevant VLAN IDs to enforce
each routing path. The Traffic assignment module assigns host
traffic to routing paths. Currently, the algorithm assigns host
traffic to a routing path (VLAN ID, in this case) randomly or
in a round-robin fashion. However, we envision to incorporate
a separate traffic monitoring module (as shown as a dotted box
in Figure 1), which provides traffic statistics feedback so that
the module can perform dynamic load balancing.

B. Implementation

The CORONET controller prototype is built on top of
NOX [2], a platform that provides APIs for SDN applications
to interact with OpenFlow switches. CORONET is compatible
with OpenFlow specification version 1.0.0 [6]. We evaluate
our CORONET prototype using Mininet, a virtual network
topology emulator [4], which can generate customized virtual
network topologies in a Linux machine.

III. FUTURE WORK

Building a general framework: CORONET’s use of
VLAN dramatically simplifies packet forwarding, reducing
the number of forwarding rules and thus improving scala-
bility compared with a standard Openflow approach. SDN
applications in CORONET can only specify logical paths
implemented by VLANs rather than specifying physical paths
directly. While many existing Openflow applications directly
control the path of packets, we believe that these applications
could be rewritten using the CORONET framework. As part of
future work, we plan to evaluate the generality of CORONET
framework to support common SDN applications, and build a
general framework that allows seamless integration with any
SDN application.
Control plane and controller reliability: Currently,

CORONET only supports fault-tolerance for data plane fail-
ures. Our work envisions to provide a complete fault-tolerant
solution that recovers from multiple failures coming from other
fault domains in SDN-based networks. For controller faults
we plan to investigate and compare two approaches: 1) an
approach based on a distributed hash table inspired by Onix [3]
and 2) a traditional software failover solution based on heart
beat detection. For the control plane we plan to investigate the
feasibility of using traditional distributed mechanisms such as
the rapid spanning tree protocol, and compare with a controller
based approach in which the controller reconfigures the control
plane when faults are detected.

REFERENCES

[1] M. Desai and T. Nandagopal. Coping with link failures in centralized
control plane architectures. In Communication Systems and Networks
(COMSNETS), 2010 Second International Conference on, pages 1 –10,
jan. 2010.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105–110, July 2008.

[3] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
a distributed control platform for large-scale production networks. In
Proceedings of the 9th USENIX conference on Operating systems design
and implementation, OSDI’10, pages 1–6, Berkeley, CA, USA, 2010.
USENIX Association.

[4] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid
prototyping for software-defined networks (at scale!). In Proc. HotNets,
Oct. 2010.

[5] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
ishnan, V. Subramanya, and A. Vahdat. Portland: A scalable fault-tolerant
layer2 data center network fabric. In Proc. ACM SIGCOMM, Barcelona,
Spain, Aug. 2009.

[6] OpenFlow Specification v1.0. http://www.openflowswitch.org/documents/
openflow-spec-v1.0.0.pdf.

[7] OpenFlow Networking Summit. http://opennetsummit.org/, Apr. 2012.

