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Abstract—In this paper SDN-WISE, a Software Defined Net-
working (SDN) solution for WIreless SEnsor networks, is intro-
duced. Differently from the existing SDN solutions for wireless
sensor networks, SDN-WISE is stateful and pursues two objec-
tives: (i) to reduce the amount of information exchanged between
sensor nodes and the SDN network controller, and (ii) to make
sensor nodes programmable as finite state machines so enabling
them to run operations that cannot be supported by stateless
solutions. A detailed description of SDN-WISE is provided in this
paper. SDN-WISE offers APIs that allow software developers to
implement the SDN Controller using the programming language
they prefer. This represents a major advantage of SDN-WISE
as compared to existing solutions because it increases flexibility
and simplicity in network programming. A prototype of SDN-
WISE has been implemented and is described in this paper.
Such implementation contains the modules that allow a real SDN
Controller to manage an OMNeT++ simulated network. Finally,
the paper illustrates the results obtained through an experimental
testbed which has been developed to evaluate the performance
of SDN-WISE in several operating conditions.

I. INTRODUCTION

In the early 2000s micro-electro-mechanical systems
(MEMS), wireless communications and digital electronics
have reached the maturity level needed to develop tiny, low-
cost, low-power wireless sensor nodes able to wirelessly
communicate with each others without a pre-deployed in-
frastructure, i.e. to form what are commonly referred to as
wireless sensor networks (WSN)s [8]. Driven by the promise
that WSNs would have produced a radical impact in several
application scenarios, in the last decade the networking re-
search community has devoted an immense effort to the study
of WSNs and the definition of appropriate solutions for them.
While such effort has resulted in a deep understanding of the
WSN related matter, the expected large scale deployment of
WSNs has not fully happened till today.

The reasons of the slow commercial take off of WSNs are
multifold. Nevertheless, at the very basis there is a technical
reason: WSNs are characterized by profoundly different re-
quirements depending on the specific application and deploy-
ment scenario. Accordingly, as widely recognized [8], there is
not something like a one-fits-all solution for WSNs. Instead,
there is a plethora of vertical application-specific solutions that
have resulted in extremely fragmented context and market.

The above problem can be overcome by making WSNs pro-
grammable and thus, there has been significant research effort
devoted to design programmable WSNs [9]–[11]. However, in

most current real-world WSN deployments, programming is
typically very tightly related to the operating system, requiring
the application developers to focus on intensive low-level
details rather than on the application logic.

The Software Defined Networking (SDN) paradigm and
OpenFlow [3], which currently is the most popular instance of
SDN, have been recently proposed to solve analogous issues
in the wired domain [1]. In OpenFlow the network nodes
handle incoming packets as specified in the so-called Flow
Table. Each entry of the Flow Table is related to a flow
and is composed by three sections: (i) a matching-rule which
specifies the values of the header field that must be found in
the packets belonging to the flow; (ii) the action that must be
executed on the packets of the flow (e.g., drop, forward to,
etc.); and (iii) some statistical information about the flow. If
the Flow Table does not contain any entry specifying how to
deal a certain packet, the node sends a request to a software
entity called Controller that has a high level abstraction of the
network elements. The Controller can run on a remote server
in a (logically) centralized manner. The Controller replies
with information required to fill a new Flow Table entry for
handling the packet.

In this way, OpenFlow clearly separates (even physically)
the data plane from the control plane and delivers a network

• which is easy to configure and manage,
• which can evolve because, in principle, new services and

management policies can be introduced in the network as
simply as it is to install a new software on a PC [1], [2],

• in which a given network node can be replaced with
another produced by any vendor, so freeing the operator
from the vendor lock-in and allowing to use commodity
hardware.

As a result, rarely the interest in a new networking paradigm
has increased at such a pace as it is happening for SDN.
Most network operators are running pilot experimentations of
OpenFlow networks, manufacturers are producing OpenFlow
compliant network equipment, and the research community
(both academic and industrial) is involved in a vast amount
of SDN-related R&D activities. A quick look at the list of
members of the Open Networking Foundation, an organization
promoting the development of SDN-related standards, suffices
to understand that this hype has spread to the wireless domain,
as well.

A few works have recently appeared that are aimed at
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extending the SDN concepts to wireless sensor networks
(WSNs) and other wireless personal area networks [4], [5].
The above papers represent important contributions to the
SDN literature as they provide convincing motivations for
the extension of the SDN paradigm to the WSN and W-PAN
domains and offer a new and interesting perspective of the
SDN paradigm but have a few shortcomings:

• protocol details, which are fundamental for the correct
operations of the network, are not provided;

• no performance evaluations of the proposed solutions
have been carried out.

In this paper we overcome the above shortcomings and go
beyond the state of the art literature by defining a stateful
SDN solution for wireless sensor networks1 in line with a
recent proposal by Bianchi et al. [6]. We call such solution
Software Defined Networking for WIreless SEnsor networks
(SDN-WISE).

The rest of this paper is organized as follows. In Section
II we provide a survey of the related work. In Section III an
overview of SDN-WISE is given. The details of the major
features of the proposed solution are explained in Section IV,
whereas, in Section V we describe the SDN-WISE prototype
we have developed. Performance of SDN-WISE are evaluated
experimentally in Section VI. Finally, conclusions are drawn
in Section VII.

II. RELATED WORK

Recently, solutions have been proposed that extend the
OpenFlow approach to the wireless sensor networks domain.

In [4] the technical challenges that must be faced to extend
the OpenFlow approach to WSNs are identified and then
the Sensor OpenFlow solution is proposed. Differently from
traditional OpenFlow, Sensor OpenFlow supports in-network
packet processing and various types of addressing defined for
WSNs. In [12] the Sensor OpenFlow approach is integrated
with other WSN programming techniques. In [5], Software
Defined Wireless Networking (SDWN) is introduced. When
compared to Sensor OpenFlow, SDWN offers a more flexible
specification of the rules to classify packets, i.e., flow matching
can consider any part of the packet, and supports the use of
duty cycle to achieve energy efficiency in WSNs.

By introducing SDN-WISE we go beyond the above works
in the following way. We define a complete architecture which
allows software developers to implement their Controllers
using any programming language of their choice. Also, SDN-
WISE introduces a software layer which allows several virtual
networks to run on the same physical wireless sensor or W-
PAN network, similarly to what FlowVisor does in OpenFlow
networks. Furthermore, SDN-WISE provides tools for running
a real Controller in an OMNeT++ simulated network, analo-
gously to Mininet [7].

Furthermore, as proposed in [6] for the wired domain,
SDN-WISE defines simple mechanisms for the definition and
handling of the Flow Table that make SDN-WISE stateful as
compared to traditional OpenFlow which is stateless. In this

1SDN-WISE applies to wireless sensor and actor networks as well; however
for the sake of readability in the rest of the paper we refer to WSNs only

way WSN nodes can be programmed as finite state machines
which can be helpful to reduce the signaling between nodes
and Controller and allow to implement policies that cannot be
supported in a stateless manner.

Finally, we have implemented a complete prototype of
SDN-WISE which we have extensively tested in our lab-
oratories and made the source code publicly available at
http://www.diit.unict.it/users/gmorabi/sdn-wise/.

To the best of our knowledge, this is the first real imple-
mentation of an OpenFlow-like solution for WSNs.

III. SDN-WISE OVERVIEW

In this section we provide an overview of the SDN-WISE
solution. More specifically, we will first briefly give the
requirements to be satisfied in the SDN-WISE design; then
we will provide an overview of the SDN-WISE technical
approach.

A. Requirements
Requirements for extending the SDN paradigm to WSNs

have been already analyzed in [4] and [5]. Such requirements
are the obvious consequence of the features of WSNs which
are significantly different from those of wired networks. In
fact, WSNs are characterized by low capabilities in terms
of memory, processing, and energy availability. Furthermore,
WSNs applications are typically non demanding in terms of
datarate. Therefore, SDN-WISE must be efficient in the use of
sensor resources, even if such efficiency will result in lower
datarate.

In order to be energy efficient, SDN-WISE supports duty
cycle [13], that is the possibility to periodically turn off the
radio interface of a sensor node, and data aggregation [14].
These features were neglected in OpenFlow wired scenarios.

Furthermore, the interactions between sensor nodes and
Controllers must be reduced as much as possible to achieve
system efficiency. In this context, some level of programmable
control logic in the sensor nodes may enable them to take
decisions without interacting with the Controller when local
information only is needed. This however, requires the intro-
duction of a state whereas the standard OpenFlow instance of
SDN is stateless [6].

Furthermore, since WSNs are intrinsically data-centric, sev-
eral solutions have been proposed that make network protocols
aware of the packet content [15]. Accordingly, SDN-WISE
nodes can handle packets based on the content stored in their
header and payload. Also, in OpenFlow packets are classified
based on the equality between a certain field in the packet
header and a given string of bytes; differently from that, in
SDN-WISE such classification can be done based on other and
more complex relational operators, e.g., higher than, lower
than, different from, etc. Finally, the data-centric nature of
WSNs involves another significant difference between the
expected behavior of SDN-WISE and OpenFlow. In fact, in
OpenFlow network resources are divided by the FlowVisor in
slices, each assigned to a Controller, and a packet can belong to
one slice only. In WSNs, instead, the same piece of data can be
of interest to several applications using different Controllers.
Therefore, in SDN-WISE a packet is not necessarily tied with
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one Controller, i.e., different Controllers can specify different
rules for the same packet.

B. SDN-WISE approach
The behavior of SDN-WISE Sensor Nodes is completely

encoded in three data structures, namely: the WISE States
Array, the Accepted IDs Array, and the WISE Flow Table.
Like in most SDN approaches, such structures are filled
with the information coming from the Controllers, running
in appropriate servers. In this way the Controllers define the
networking policies which will be implemented by the Sensor
Nodes.

At any time SDN-WISE nodes are characterized by one
current state for each active Controller. A state is a string
of sState bits. The WISE States Array is the data structure
containing the values of the current states.

Given the broadcast nature of the wireless medium, sensor
nodes will also receive packets which are not meant for them
(not even for forwarding). The Accepted IDs Array allows
each sensor node to select only the packets which it must
further process. In fact, the header of the packets contains a
field in which an Accepted ID is specified.

A node, upon receiving a packet, controls whether the ID
contained in such field is listed in its Accepted IDs Array.
If this is the case, the node will further process the packet;
otherwise it will drop it.

In the case the packet must be processed, the sensor node
will browse the entries of its WISE Flow Table. Each entry
of the WISE Flow Table contains a Matching Rules section
which specifies the conditions under which the entry applies.
In SDN-WISE Matching Rules may consider any portion of
the current packet as well as any bit of the current state. If
the Matching Rules are satisfied, then the sensor node will
perform an action specified in the remaining section of the
WISE Flow Table entry. Note that such action may refer to
how to handle the packet as well as how to modify the current
state.

If no entry is listed in the WISE Flow Table whose Matching
Rules apply to the current packet/state, then a request is sent
to the Controllers.

In order to contact the Controllers, a node needs to have a
WISE Flow Table entry indicating its best next hop towards
one of the sinks. This entry is different from the others because
it is not set by a Controller but is discovered by each node in
a distributed way.

To this purpose an appropriate protocol is run by the
Topology Discovery (TD) layer as it will be described layer,
which is based on the exchange and processing of appropriate
packets called TD packets. Such packets contain information
about the battery level and the distance from the (nearest)
sink in terms of number of hops. Every time a node receives
one of such packets it compares the current best next hop
with the information just acquired, then it chooses the best
next hop giving priority to the number of hops, then the
RSSI value received with the message and finally the residual
battery level. This information is also used to populate a
WISE Neighbors list. This list contains the addresses of the
neighboring nodes, their RSSIs and their battery levels. This

table is sent periodically to the Topology Management (TM)
layer, as detailed in the following, in order to build a graph
representation of the network. After that, the table is totally
cleared and rebuilt with incoming TD packets in order to
always have an updated view of the local topology.

One of the Controllers acts as a proxy between the physical
network and the other Controllers. This is called WISE-Visor
and is the analogous of the FlowVisor in traditional OpenFlow
networks.

Controllers specify the network management policies which
must be implemented by the WSN and can be application
dependent. Accordingly, the Controllers can interact with the
application.

Note that sensor nodes have limited capabilities in terms of
memory, therefore, selection of the size of the different data
structures is very important2. The optimal choice of such size
depends on several deployment specific features set by the
WISE-Visor during the initialization phase.

C. SDN-WISE protocol architecture
In SDN-WISE networks Sensor Nodes and one (or several)

Sink(s) can be distinguished. Sinks are the gateways between
the Sensor Nodes running the Data plane and the elements
implementing the Control plane. The protocol stack of the
Data plane, mostly run by Sensor Nodes, is shown in the
left side of Figure 1. The protocol stack of the Sink and the
other elements implementing the Control Plane are described
in the right side of Figure 1. Sensor Nodes include an IEEE
802.15.4 transceiver and a micro-control unit (MCU). Above
the IEEE 802.15.4 protocol stack, the Forwarding layer runs
in the MCU which handles the arriving packets as specified
in a WISE flow table3. This table is continuously updated by
the Forwarding layer according to the configuration commands
sent by the Controllers.

The In-Network Packet Processing (INPP) layer runs on
top of the Forwarding layer. This is responsible for operations
like data aggregation or other in-network processing. In current
SDN-WISE implementation the INPP layer concatenates small
packets that must be sent along similar paths. This would
reduce the network overhead. Furthermore, we are developing
solutions that enable the INPP to perform network coding
which is very efficient in several WSN scenarios [16], [17].

The Topology Discovery (TD) layer, instead, can access
all layers of the protocol stack by means of appropriate APIs.
Thus, it can gather local information from the nodes and
control their behavior at all layers, according to the indications
provided by the Controllers. The TD layer provides an API
to the application layer as well, which extends the IEEE 802
APIs. This guarantees legacy with existing applications.

In the Control plane, the network management logics are
dictated by one or several Controller(s), one of which is the
WISE-Visor. The WISE-Visor includes a Topology Man-
agement (TM) layer which abstracts the network resources
so that different logical networks, with different management

2In particular note that the size of the WISE State Array gives an
upperbound on the number of active Controllers that can be supported by
the network.

3We derive our terminology from OpenFlow [3].
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Fig. 1: SDN-WISE protocol stack.

policies set by different Controllers, can run over the same set
of physical devices. The TM layer has access to APIs offered
by all the protocol layers. Such APIs enable to control the be-
havior of all protocol layers and therefore to implement cross-
layer operations. The use of the TM layer is driven by two
requirements: i) collecting local information from the nodes
and sending them to the Controller(s) in the form of a graph
of the network (reporting information related to topology,
residual energy level, SNR on the links, etc.) ii) controlling all
protocol stack layers as specified by the Controller(s). To this
purpose, between the sink device (characterized by the same
protocol stack of Sensor Nodes) and the WISE-Visor there is
the Adaptation layer which is responsible for formatting the
messages received from the Sink in such a way that they can
be handled by the WISE-Visor and viceversa.

The Controllers may run either in the same node hosting
the TM layer or in remote servers. As a consequence, the
interactions between the Controllers and the TM layer can
occur in several ways, as shown in the central part of Figure
1. In fact, in the case the Controllers run in the same node
hosting the TM layer, interactions will occur through the Java
methods offered by the TM layer. Alternatively, interactions
can occur through the Java remote method invocation (RMI)
or the Simple Object Access Protocol (SOAP). In this way,
programmers can implement Controllers either in Java or in
some Web programming languages.

Finally, note that the SDN-WISE protocol stack also in-
cludes a specific Adaptation layer which can interact with a
simulated sink (not a real sink). In this way the Control plane
can set the networking policies of a simulated network. In
other words SDN-WISE offers a tool which is very similar to
Mininet [7].

IV. SDN-WISE PROTOCOL DETAILS

In this section we describe in detail the major features of the
SDN-WISE protocols. More specifically, in Section IV-A we
will explain the Topology Discovery protocol. Then, in Section
IV-B we will describe in detail how sensor nodes behave when
they receive a new packet.

A. Topology Discovery
In Section III-C we have explained that the Topology

Manager module in the WISE-Visor builds a consistent view
of the current network status. To this purpose it requires to
collect local topology information generated by sensor nodes.
The Topology Discovery protocol run by all sensor nodes, is
responsible for generating such information and delivering it
to the WISE-Visor.

The TD protocol maintains information about the next hop
towards the Controllers and its current neighbors updated. To
this purpose all sinks4 in the SDN-WISE network periodically
and (almost) simultaneously transmit a Topology Discovery
packet (TD packet) over the broadcast wireless channel. Such
packet contains the identity of the sink that has generated it,
a battery level, and the current distance from the sink which
is initially set to 0.

A sensor node A receiving a TD packet from sensor node B
(note that B can be a sink) performs the following operations5:

1) inserts B in the list of its current neighbors along with
the current RSSI and the battery level.
Obviously, if B is already present in the list of current
neighbors, then only the RSSI and battery level values
are updated;

2) controls whether it has recently received a TD packet
with a lower value of the current distance from the sink.
If this is not the case, then node A updates the value
reported in the TD packet to the current value plus one
and sets its next hop towards the Controllers equal to
B;

3) sets its battery level in the corresponding field of the TD
packet;

4) transmits the updated TD packet over the broadcast
wireless channel.

Periodically, each sensor nodes generates a packet contain-
ing its current list of neighbors and sends it to the WISE-
Visor. Note that the list of neighbors is periodically cleared.
Nodes receiving packets directed towards the WISE-Visor or
the Controllers relay them to the node set as their next hop
towards the Controllers.

The rate of TD packets generation as well as of the packets
containing local topology information impacts the perfor-
mance of SDN-WISE. In fact, the higher such frequencies is,
the higher is the overhead generated by the protocol. However,
such frequencies cannot be too low in dynamic scenarios
(with rapid topology changes); accordingly, their setting is
application specific and can be controlled by the WISE-Visor.
B. Packet handling

In this section we describe how the Forwarding protocol
described in Section III-C operates upon receiving a packet. To
this purpose we first provide a description of the WISE packet
format; then, a description of the structure of the WISE flow
table and, finally, we will explain how the WISE flow table is
utilized upon reception of a packet.

4We already said that there might be several sinks in the same SDN-WISE
network.

5TD packets received with RSSI lower than a given threshold will be
neglected. In our current implementation such threshold is set to -60 dBm.
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Fig. 3: WISE flow table.

Fig. 2: WISE packet header

As shown in Figure 2, SDN-WISE packets have a fixed
header consisting of 10 bytes divided in the following fields:

• The Packet length field provides the length of the packet,
included the payload (if any), in bytes.

• The Scope identifies a group of Controllers that have
expressed interest in the content of the packet. The Scope
value is initially set to 0 (as default) but can be modified
through appropriate entries in the WISE flow table of
the sensor node generating the packet. In our current
implementation Scope values have global validity as the
WISE-Visor guarantees network-wide consistency.

• The Source and Destination Addresses obviously specify
the addresses (we use two bytes addresses in our imple-
mentation) of the node which has generated the packet
and the intended destination.

• The flag U is used to mark packets that must be delivered
to the closest sink.

• The Type of packet field is used to distinguish between
different types of messages in fact besides data packets,
TD packets and packets containing local topology infor-
mation, which we have already discussed, SDN-WISE
uses other types of packets for the request of a new
entry to the Controllers, for the introduction of a new
entry in the WISE flow table of a given sensor node, for
opening a path in a sequence of sensor nodes, and for
turning the wireless interface of a sensor node off for a
certain time interval. The type of packet will determine
the interpretation of the packet payload.

• The TTL is the time to live and is reduced by one at each
hop.

• Finally, the Next Hop ID is the field which must be
present in the Accepted IDs Array for the packet to be
further processed by the sensor node (as explained in

Section III-B).

The structure of the WISE flow table is shown in Figure 3
and extends the one proposed in [5].

Like in the OpenFlow case we can distinguish three sec-
tions: Matching Rules, Actions, and Statistics. The Matching
Rules specify up to three conditions. If such conditions are
satisfied then the corresponding Action is executed and the
information reported in the Statistics section is updated. Each
Matching Rule consists of a field (S) which specifies whether
the condition regards the current packet (S = 0) or the state
(S = 1); the fields Offset and Size specify the first byte and
the size, respectively, of the string of bytes in the packet or
the state which should be considered, the Operator field gives
the relational operator to be checked against the Value given
in the rule. For example, the second Matching Rule of the first
entry in the WISE flow table given in Figure 3 is satisfied if
the first 2 bytes (Size = 2) after byte 10 (Offset = 10) of the
current packet (S=0) assume a value which is higher (Op =
“>”) than xThr (Value = xThr).

If all the conditions specified in the Matching Rules section
are satisfied (if Size = 0 then the Matching Rule is not
considered), then the corresponding Action is executed. An
Action is specified by five fields. The Type specifies the
type of action. Possible values of the Type field can be
“Forward to”, “Drop”, “Modify”, “Send to INPP”, “Turn off
radio”. The flag M specifies whether the entry is exclusive
(M = 0) or not (M = 1). In the first case, if the conditions
are satisfied, the sensor node executes the action and then
stops browsing the WISE flow table. In the second case,
instead, after executing the action, the sensor node continues
to browse the WISE flow table and executes other actions if
the corresponding conditions specified in the Matching Rules
section are satisfied.

The meaning of the other two fields (i.e., Offset and Value)
depend on the type of action. For example, if the action is
“Forward to” they must specify which is the Next Hop ID
(which will be written in the packet), if it is “Drop” they
give the drop probability as well as the next hop ID in case
the packet is not dropped, if it is “Modify” they specify the
Offset and the new Value to be written, if it is “Send to INPP”
they specify they type of processing that must be executed, if
it is “Turn off radio” they specify after how much time the
radio must be turned on again.

In case the action is “Modify”, the flag S specifies whether
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Fig. 4: Exemplary topology.

Fig. 5: Finite state machine implementing a policy such that
packets generated by A are dropped if the last data measured
by B is lower than (or equal to) xThr.

the action must be executed on the packet or the state.
Statistics are used like in standard OpenFlow and thus, we

do not discuss them further in this paper.
In the following we will show how sensor nodes use

their data structures in an exemplary scenario highlighting
the specific features of SDN-WISE. Consider the network
topology shown in Figure 4 and suppose that data measured by
sensor A is significant only if the data measured by sensor B
is higher than a given threshold xThr. Therefore, if we pursue
energy efficiency a network policy should be implemented that
enforces node C to drop packets if the packet received by B
contains a measured data lower than xThr. Using traditional
OpenFlow-like solutions it is impossible to enforce the above
behavior for the following reasons:

• matching is executed only verifying the equivalence be-
tween a field in the packet header and a specific value,
i.e., it is not possible to look at the payload and “higher
than”-type relationships are not supported;

• in stateless solutions it is impossible to make the handling
of the packet dependent on the content of another packet.

Instead, in SDN-WISE the above policy can be easily realized
through the finite state machine represented in Figure 5 which
can be implemented through the five WISE flow table entries
shown in Figure 3. In fact, the first two lines specify the
transitions between states 0 and 1 and viceversa, depending on
the value contained in the 10th byte of the packets generated
by node B. More specifically, note that in the first entry the
first Matching Rule selects packets coming from node B, the
second Matching Rule selects those that have in the tenth
and eleventh bytes a value higher than xThr, finally the third
Matching Rule selects the cases in which the current state of
the node is 0. If all the above rules are satisfied then the state
is set to 1 as shown in the Action section. Analogously, the
second entry selects the cases in which the incoming packet
has been generated by B contains a measured data lower than
or equal to xThr, and the current state is one; and in such cases
sets the state to 0. The third entry in the table is executed any
time a packet generated by B is received and specifies that

the packet must be forwarded to D in any case. Finally, the
fourth and fifth entry specify that packets coming from A must
be dropped if the current state is 0 (see the fourth entry) or
forwarded to D if the current state is 1 (see the fifth entry).

V. PROTOTYPE AND TESTBED

In our testbed we used EMB-Z2530PA based sensor nodes.
EMB-Z2530PA is a wireless module developed by Embit for
LR-WPAN applications. The module provides IEEE 802.15.4
wireless connectivity in the 2.4 GHz ISM band. It is based
on a Texas Instruments CC2530 single chip device which is
an 8051 8-bit controller. Each node is equipped with 8kB of
RAM and 256 kB of Flash memory 40 kB of which are used
for MAC layer (TIMAC for CC2530 v1.4.0) and 10 kB are
used for the SDN-WISE protocol.

For what concerns the Control plane, our prototype supports
different deployment options. The simplest is the one depicted
in Figure 6(a), in which the node hosting the sink is attached to
the desktop computer using USB 2.0. In our testbed the WISE-
Visor as well as the Controllers are hosted in this desktop
computer which is equipped with Intel(R) Core(TM) 2 CPU
2.40 GHz and 4GB of RAM running Windows 7, 32 bit. The
Controllers have been implemented using Java 7. Topology
information is stored in a JGraphT’s Graph object.

The above deployment option requires the presence of a
node (the PC) with significant computational resources in the
area where the sensor nodes are deployed.

In several scenarios, however, it is not possible to deploy
such powerful nodes in the network area. In these cases,
the sink is usually attached to an embedded system that
access the Internet through some communication interface. For
example, in the experimental testbed represented in Figure
6(b), the sink is a TI CC2500 device attached via USB to
a Beagleboard running a Linux operating system (Ububtu
12.04). The Adaptation layer is implemented in the Beagle-
board which sends control packets to the WISE-Visor on a
remote server. In our testbed the Beagleboard is equipped
with an UMTS interface (the smartphone in Figure 6(b))
and communication between the Adaptation and WISE-Visor
occurs through TCP/IP connections.

The Controllers may be hosted by other PCs (or virtual
machines) and interact with the WISE-Visor layer in several
ways. In our testbed we support both SOAP and RMI inter-
action models.

Finally, simulations modeling the behavior of the sensor
nodes and the sinks can be executed on another PC. In Figure 7
we show a screenshot from an OMNeT++ simulation showing
the topology of the simulated sensor network. Node 0 is
the sink and interacts through the Adaptation module with
a real instance of the WISE-Visor. Accordingly, Controllers 1
and 2 can be real controllers determining the policies which
are applied by the simulated sensor nodes. In addition, the
(emulated) Sink can be used to create a virtual network
extension so that simulated and real nodes are fully integrated
and can interact with each others. This can be useful for testing
a real network scenario in which there are not enough real
devices. In this case only one Controller is used for both nodes
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(a) Simplest deployment option.
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(b) Distributed deployment option.

Fig. 6: SDN-WISE deployment options.
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Fig. 7: Integration with the OMNeT++ simulator.

(real and simulated) and it treats all of them without making
any distinction.

VI. PERFORMANCE EVALUATION

Due to space constraints we will omit the results obtained by
using OMNeT++ simulations. Instead, in this section we will
illustrate the results obtained by the SDN-WISE platform in
a physical testbed. More specifically, 6 nodes (5 sensor nodes
and a sink) have been deployed as shown in Figure 8. In our
experiments the sink was connected via USB to a PC which
was running the Adaptation layer and the entire Control plane
functionality, like shown in Figure 6(a). Finally, the Controller
has been implemented in Java and simply executes the Dijkstra
algorithm.

In each measurement campaign 5000 data packets have been
sent, each every 15 seconds. Different payload sizes have been
considered for such packets (10, 20 and 30 bytes). Also, we
have changed the time interval, T , between two consecutive
generations of TD packets. In each campaign we have set
the time interval between the transmissions of local topology
information to twice the value of T .

In the following we show the performance achieved by
SDN-WISE in terms of

• Round Trip Time (RTT), that is, the time interval between
the generation of a data packet and the reception of the

Fig. 8: Nodes deployment.

corresponding acknowledgment;
• Efficiency, measured as the ratio between the number of

payload bytes received by the intended destinations and
the overall number of bytes circulating in the network;

• Controller response time, measured as the duration of the
time interval when the Controller receives a request for a
new entry and the time instant when the Controller sends
the corresponding entry.

In Figures 9(a) and 9(b) we represent the Cumulative
Distribution Functions (CDF) of the RTT when the distance
between the packet source and the packet destination is equal
to 3 and 5, respectively. In each figure we represent three
curves obtained for different values of the payload size (10,
20, and 30 bytes). As expected, RTT increases as the distance
and the payload increase. Furthermore, we expect a similar
behavior from the standard deviation. Indeed, this is reflected
in Figures 10 and 11 where we show the average and the
standard deviation of the RTT vs. the payload size for different
values of the distance between source and destination.

In Figures 10 and 11 we plot a curve for the multicast case,
as well. This has been obtained by measuring the time instant
between the transmission of a packet and the reception of the
acknowledgement from the last destination. In this case, only
three destinations were considered and were deployed within
the radio range of the source. Obviously, the average and the
standard deviations of the RTT is slightly higher than in the
analogous (one hop) unicast case. The corresponding CDFs
are represented in Figure 12.
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(a) Number of hops = 3.
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(b) Number of hops = 5

Fig. 9: CDFs of the RTT for different payload sizes and different distances between the source and destination node.
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Fig. 10: Average RTT vs. the payload size, for different values
of the number of hops.
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Fig. 11: Standard deviation of the RTT values vs. the payload
size, for different values of the number of hops.

The performance in terms of efficiency are shown in Figures
13 and 14. More specifically, in Figure 13 we represent
the efficiency vs. the payload size for different values of
the lifetime of an entry in the WISE flow table, which we
denote here as TTL, instead in Figure 14 we show the same
curves obtained for different values of the interval between
consecutive transmissions of the TD packets, T .

Note that most of the inefficiency is due to the high ratio
between the header size and the payload size.

Finally, in Figures 15 we show the response times of the
Controller to requests from nodes for new entries. We have
simulated the process of request generation by the nodes
modeling a network consisting of 50, 60, and 70 nodes.
Furthermore we have assumed that initially only 10% of
possible links are active but we have increased such number
by 10% every 100 requests, and at the end we obtain a fully
meshed network. What we observe is that there are hypes in
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Fig. 12: CDF of the RTT in the multicast case for different
payload sizes.
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Fig. 13: Efficiency for different values of maximum WISE
Flow Table entry TTL.

the plots which are in correspondence of an increase in the
number of links which calls for a new run of the Dijkstra
algorithm. In any case the response delay is always below
100 ms. Such value could be further reduced by running the
Controller on a more powerful hardware.

VII. CONCLUSIONS

In this paper we have introduced SDN-WISE, a Software
Defined Networking solution for WIreless SEnsor networks.
SDN-WISE is stateful and aimed at reducing the amount of
information exchanged between sensors and SDN controllers.
Details on the SDN-WISE protocol stack are provided as well
as results obtained from extensive measures in a physical
testbed. SDN-WISE is a promising approach to the realization
of programmable WSNs.

Nevertheless, several issues are still open for further re-
search. The most important is related to security. In fact, solu-
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(a) 50 Nodes.

0 100 200 300 400 500 600 700 800 900 1000
10−1

100

101

102

Request #

Di
jks

tra
’s 

Co
nt

ro
lle

r R
es

po
ns

e 
Ti

m
e 

[m
s]

(b) 60 Nodes.
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(c) 70 Nodes.

Fig. 15: Controller response times for different topologies.
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Fig. 14: Efficiency for different values of beacon sending
period.

tions are required that make the SDN-WISE network resilient
to intentional attacks and bugs in the Controller software. We
are addressing such issue by introducing a mechanism that in
case of congestion deletes an entry in the WISE flow table
when this is used too much (as compared to the others).

Furthermore, we are investigating possible implementations
of network coding in SDN-WISE. In this context, interesting
insights have been already presented in [18].
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