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Generative Adversarial Networks (GANSs)

* Two player mini-max game
* Generator G
* Discriminator D
* D is trained to discriminate between a real image and a generated
Image.
* Gis trained to fool D

Min Max B 0 [108D(X)] + E o p, () [log (1 — D(G(2)))
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Generative Adversarial Networks
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Deep Convolutional GANs (DCGANSs)

* Developed an architecture combining GANs and deep learning
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Wasserstein GANs (WGAN)

* The original GAN used D as a classifier, minimizing the Jensen-
Shannon Divergence:

JS(P,,P,) = KL(P,||P,) + KL(P,||P,)

* The Wasserstein GAN applies the Kantorovich-Rubinstein duality to
approximate the Wasserstein-1 distance:

minmax E [D(z)] - E [D(&))]
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Improved Wasserstein GANs (WGAN-GP)

A differentiable function is 1-Lipschitz if and only if it has gradients
with norm less than or equal to 1 everywhere

* [dea: Enforce the Lipschitz-1 constraint by penalizing the gradient norm
of the discriminator with respect to the input — not tractable.

* Instead penalize the square distance of samples from 1.

L= E [D@)]- E [D@)]+A E [(IVeD(@)]2—1)].
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Conditional GANs (cGANSs)

* Introduce some additional information into the generator and
discriminator.  /ossmiao o0 N
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Experiments

* Implement the Improved Wasserstein method in the conditional
GAN setting.

* Control digit generation using MNIST
* Alter visual attributes in faces using the CelebA dataset

* Explore the latent space



MNIST Experiments
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Label Alteration

e Each row has the same z vector
e Each column has the same y vector
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Interpolation

* Interpolate between both z and y vectors
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CelebA Experiments
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Attribute Alteration

Black Blonde Pale
Bald Bangs Hair Hair Glasses Makeup  Male Skin Smile
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Interpolation
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CelebA Experiments using WGAN-GP
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CelebA Experiments using GAN
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Conclusion

e Generative Adversarial Networks
e \Wasserstein Method

e Conditional GANs
* Experiments on two datasets
e Future Work

* Try on other datasets

* Compare with other GAN methods

* Least Squares GANs
* Energy Based GANs
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Thank you

Questions?

Code: https://github.com/cameronfabbri/cWGANs



