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Motivation: (Textual) Information Retrieval

o Information Retrieval is the “activity of obtaining information
resources relevant to an information need from a collection of
information resources”.

@ To goal is to retrieve relevant (in terms of having the same
conceptual topics or meaning) textual documents from databases.

@ Example:
Prior art (state of the art) searches for patents
Searches at google scholar
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Latent Semantic Indexing v.s. Lexical Matching

@ Lexical Matching is inaccurate because
i) There are synonymys
i) Words have multiple meanings
so a user's query may literally match irrelevant documents.

@ Latent Semantic Indexing (LSI) solved the problem by using
conceptual indices rather than individual words.
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Consider car, automobile, driver and elephant where car and
automobile are synonyms.

@ In lexical matching, it is the same for query automobile to retrieve
documents about cars and documents about elephants, if neither
included the term automobile.

@ In latent semantic indexing, the projection space can reflect
interrelationships between terms. Car and automobile are close to
each other because they always occur in similar contexts with words
(motor, model, vehicle, engine, etc.).
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Latent Semantic Indexing

An indexing and information retrieval method

@ Mathematically based on truncated singular value decomposition
(SVD)

Assumes that words used in the same contexts have similar meanings

“Called latent semantic indexing because of its ability to correlate
semantically related terms that are latent in a collection of text”
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Singular Value Decomposition (SVD)

WLOG, assume m > n and rank(A) = r < min(m, n),

Amxn - UanZanVT

nxn

where UTU=VTV =1,
Y =diag(o1,...,0p),01>02> >0, >0,41=--=0,=0
@ Dyadic decomposition:

r
A= E u,-a,-v,-T
i=1

where U = [uyup -~ up], V = [viva -+ vp)
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Best Rank-k Approximation [Eckart and Young]

Define
k

-
Ax = g ujojv;

i=1
then

i A— Bl =||A— Al
ran%n):kll IIE =l klIF

Ak, which is constructed from the k-largest singular triplets of A, is the
closest rank-k matrix to A.
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Latent Semantic Indexing

Construct term-document matrix A
Take SVD decomposition of term-document matrix
Select k and find Ag, the best rank-k approximation

Queries

Updating
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Construct Term-Document Matrix

The term-document matrix
A= [ay]

where where aj; denotes the frequency that term i occurs in document .
We can write

aj = L(i,j) x G(i)

where L(i, ) is the local weighting for term i in document j, and G(i) is
the global weighting for term .

@ By adding local and global weightings, we can change the importance
of terms within or among documents.
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Example: Database

Label Medical Topic

M1 study of depressed patients after discharge with regard to age
of onset and culture T

M2  culture of pleuropneumonia like organisms found in vaginal
discharge of patients

M3  study showed oestrogen production is depressed by ovarian
irradiation

M4 cortisone rapidly depressed the secondary rise in oestrogen
output of patients

M5  boys tend to react to death anxiety by acting out behavior while
girls tended to become depressed

M6 changes in children’s behavior following hospitalization studied
a week after discharge

M7  surgical technique to close ventricular septal defects

M8  chromosomal abnormalities in blood cultures and bone marrow
from leukaemic patients

M9  study of christmas disease with respect to generation and culture

M10 insulin not responsible for metabolic abnormalities accompanying
a prolonged fast

M11  close relationship between high blood pressure and vascular
disease

M12  mouse kidneys show a decline with respect to age in the ability
to concentrate the urine during a water fast

M13 fast cell generation in the eye lens epithelium of rats

M14 fast rise of cerebral oxygen pressure in rats
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SVD Decomposition and Best Rank-k Approximation

Take SVD decomposition of term-document matrix A = UX vrT,
approximated by A = U X, V] = Zf-;l uioivil .

A, = Best rank-£ approximation to A
m = Number of terms

[’ =Term vectors n = Number of documents
¥ = S8ingular values k = Number of factors
V' =Documentvectors r = Rankof A

Term

Vectors k

K Document
_ Vectors
A4, U »
k

m x n mxr r=<r r=n
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Projection Space

@ k-dimensional Term Projection Space: (UxXi)mxk

@ k-dimensional Document Projection Space: (ViXk)nxk
For example, when kK =2, Ay = U210 V)
@ 2-dimensional Term Projection Space: (ui01, up02)

@ 2-dimensional Document Projection Space: (vio1, v203)
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Example: Projection Space

aMI
0.2+ edepressed
edischarge_
e patients
AM2
aM3
o1 Jvad M4
a
ebehavior oestrogen T
estudy
T T T T 1
ofo 02 04 0.6 0.8 1.0
aM7 M8 *age
eabnormalities
eblood
eclose
ediscase
erise
-0.2 erespect AM9
®generation
AMI0
aMII, MI2
®pressure
-0.4 erats
aMI13
aMIi4
-0.6
efast
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@ A query is a phrase
@ In order to retrieve information, query must be projected in the
projection space and compared to all existing documents.

The projected query is
G=q" Uz,
where g is the vector of words in the query
@ In terms of similarity, a common measure is the cosine between query
and document.
@ Generally, all documents exceeding some cosine threshold are
returned.
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Example: Queries

o We want to identify documents that contain information related to
the age of children with blood abnormalities.

" /01623 —0.1372
0.2068 —0.0488
00597 0.0614
0.1663 —0.1313
0.0258 —0.1246
04534  0.0386
03579  0.1710
02931  0.1426 ,
0.0690 —0.1576 35919 0
0.0940 —0.6535 ( 0 2.6471)
0.0599 —0.2378

0.1560  0.0661
04948  0.1091
0.0460 —0.3393
0.0369 —0.4196
0.1797 —0.1456
0.1087 —0.2126
03814  0.0941

(01491 -0.1199 )=

O0OO0O0DO0O0OO0O0O0OCO0O0O0O =0 = =

@ All documents with cosine greater than 0.85 is considered relevant.
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Example: Queries
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Example: Queries

@ LSI returned relevant topics M8, M9 and M12

o Lexical-matching returned M1, M8, M10, M11 and M12, but M1
and M10 are not relevant, M9 would be missed.

@ In LSI, the most relevant topic M9 is returned.
Query: age of children with blood abnormalities
MO: study of christmas disease with respect to generation and culture
(christmas disease is the name of hemophilia in young children)
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Suppose an LS| model is already built based on the database, more terms
and documents are added. How are we going to update the model fitting?

@ Folding-in: essentially the same with query representation,
quick and simple

@ Recomputing the SVD: repeat the whole procedure,
requires more computation time

@ SVD-updating: computationally efficient
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Folding-in: Document

Uk Sk %
- mxK k x k kKxn
P
m x (n+p) m x k k x k k x (n+p)

@ p new documents

@ folding-in a new document vector, d, into the existing LSI projection
model, a projection, d is computed by

d=d Uz, !
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Folding-in: Term

ps VT
k x k k x
(m+qg) x n (m+q) x k k x k kxn

@ g new terms

o folding-in a new term vector, t, into the existing LSI projection
model, a projection, t is computed by

t=t"V,x, !
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Example: Updating

Label Medical Topic

M15 behavior of rats after detected rise in oestrogen
M16 depressed patients who feel the pressure to fast
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Example: Foldin

g-in
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Example: Recomputing the SVD

Simply compute the SVD of a reconstructed term-document matrix, say
A. Now the new term-document matrix A is 18 x 16.
Recomputing the SVD

A= OSUT
Construct the rank-2 approximation to A by

fo = U5,V
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Example: Recomputing the SVD
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Example: Difference between Folding-in and Recomputing

the SVD

@ Folding-in didn't reconstruct the semantic representation in the new
database

@ The existing LSI didn't take the association between behavior and
rats into consideration. Thus it fails to form the cluster M13, M14
and M15
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SVD-updating: Documents

Let Dy p denote new document vectors, B = (Ax|D), define
SVD(B) = UgZsV]. Then

Vi 0
Ul B = (%] U D)
A

since Ay = UkaVkT. If F= (Zk|UkTD) and SVD(F) = U,:Z,:V,_—T, then

Vi, 0
Ug = UkUr, Vg = (Ok ) VF,YF =Yp

I
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SVD-updating: Terms

A .
Let T4xn denote new term vectors, C = ( k), define

7
SVD(C) = Ucxc VL. Then
ur o e
(5 0)ew=(s)
ifH=( 2% ) and SVD(H) = U4y V,T, then
TV,

Ve = (5 ) Un Ve = Viia T = T
q
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SVD-updating: Term Weight Correction

For a change of weightings in j terms, let Y; be an m x j matrix with rows
of zeros or rows of j-th order identity matrix /;, let Z; be n x j matrix whose
columns specify the actual differences between old and new weights for
each of the j terms. The correction step is actually to compute the SVD
decomposition of W = Ay + Y;Z;T. Define SVD(W) = UwZw Vjj,. Then

Ul WV = (S« + UL Y;Z7 Vi)
If Q= (Zk + U] Y;ZT Vi) and SVD(Q) = UgEV{, then

Uw = UkUq, Vw = Vi Vg
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Example: SVD-updating

04
eculture  aM]
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Orthogonality

One important difference between the folding-in and the SVD-updating is
the guarantee of orthogonality.

@ The folding-in process corrupts the orthogonality by appending
non-orthogonal submatrices.

@ The SVD-updating can guarantee the orthogonality.
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Compare Updating Methods

‘ Computational Complexity ‘ Orthogonality

Folding-in * No
Recomputing the SVD ok Yes
SVD-updating *x Yes
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Thanks!
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