
Computational Methods for
Intelligent Information Access
(Latent Semantic Indexing)

Presented by Yiyi Yin

September 11, 2017

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 1 / 34

Motivation: (Textual) Information Retrieval

Information Retrieval is the “activity of obtaining information
resources relevant to an information need from a collection of
information resources”.

To goal is to retrieve relevant (in terms of having the same
conceptual topics or meaning) textual documents from databases.

Example:
Prior art (state of the art) searches for patents
Searches at google scholar

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 2 / 34

Latent Semantic Indexing v.s. Lexical Matching

Lexical Matching is inaccurate because
i) There are synonymys
ii) Words have multiple meanings
so a user’s query may literally match irrelevant documents.

Latent Semantic Indexing (LSI) solved the problem by using
conceptual indices rather than individual words.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 3 / 34

Example

Consider car, automobile, driver and elephant where car and
automobile are synonyms.

In lexical matching, it is the same for query automobile to retrieve
documents about cars and documents about elephants, if neither
included the term automobile.

In latent semantic indexing, the projection space can reflect
interrelationships between terms. Car and automobile are close to
each other because they always occur in similar contexts with words
(motor, model, vehicle, engine, etc.).

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 4 / 34

Latent Semantic Indexing

An indexing and information retrieval method

Mathematically based on truncated singular value decomposition
(SVD)

Assumes that words used in the same contexts have similar meanings

“Called latent semantic indexing because of its ability to correlate
semantically related terms that are latent in a collection of text”

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 5 / 34

Singular Value Decomposition (SVD)

WLOG, assume m ≥ n and rank(A) = r ≤ min(m, n),

Am×n = Um×nΣn×nV
T
n×n

where UTU = V TV = I ,
Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0

Dyadic decomposition:

A =
r∑

i=1

uiσiv
T
i

where U = [u1u2 · · · un],V = [v1v2 · · · vn]

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 6 / 34

Best Rank-k Approximation [Eckart and Young]

Define

Ak =
k∑

i=1

uiσiv
T
i

then
min

rank(B)=k
||A− B||2F = ||A− Ak ||2F

Ak , which is constructed from the k-largest singular triplets of A, is the
closest rank-k matrix to A.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 7 / 34

Latent Semantic Indexing

Construct term-document matrix A

Take SVD decomposition of term-document matrix

Select k and find Ak , the best rank-k approximation

Queries

Updating

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 8 / 34

Construct Term-Document Matrix

The term-document matrix
A = [aij]

where where aij denotes the frequency that term i occurs in document j .
We can write

aij = L(i , j)× G (i)

where L(i , j) is the local weighting for term i in document j , and G (i) is
the global weighting for term i .

By adding local and global weightings, we can change the importance
of terms within or among documents.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 9 / 34

Example: Database

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 10 / 34

Example: Term-Document Matrix

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 11 / 34

SVD Decomposition and Best Rank-k Approximation

Take SVD decomposition of term-document matrix A = UΣV T ,
approximated by Ak = UkΣkV

T
k =

∑k
i=1 uiσiv

T
i .

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 12 / 34

Projection Space

k-dimensional Term Projection Space: (UkΣk)m×k

k-dimensional Document Projection Space: (VkΣk)n×k

For example, when k = 2, A2 = U2Σ2V2

2-dimensional Term Projection Space: (u1σ1, u2σ2)

2-dimensional Document Projection Space: (v1σ1, v2σ2)

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 13 / 34

Example: Projection Space

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 14 / 34

Queries

A query is a phrase

In order to retrieve information, query must be projected in the
projection space and compared to all existing documents.

The projected query is
q̂ = qTUkΣ−1

k

where q is the vector of words in the query

In terms of similarity, a common measure is the cosine between query
and document.

Generally, all documents exceeding some cosine threshold are
returned.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 15 / 34

Example: Queries

We want to identify documents that contain information related to
the age of children with blood abnormalities.

All documents with cosine greater than 0.85 is considered relevant.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 16 / 34

Example: Queries

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 17 / 34

Example: Queries

LSI returned relevant topics M8, M9 and M12

Lexical-matching returned M1, M8, M10, M11 and M12, but M1
and M10 are not relevant, M9 would be missed.

In LSI, the most relevant topic M9 is returned.
Query: age of children with blood abnormalities
M9: study of christmas disease with respect to generation and culture
(christmas disease is the name of hemophilia in young children)

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 18 / 34

Updating

Suppose an LSI model is already built based on the database, more terms
and documents are added. How are we going to update the model fitting?

Folding-in: essentially the same with query representation,
quick and simple

Recomputing the SVD: repeat the whole procedure,
requires more computation time

SVD-updating: computationally efficient

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 19 / 34

Folding-in: Document

p new documents

folding-in a new document vector, d , into the existing LSI projection
model, a projection, d̂ is computed by

d̂ = dTUkΣ−1
k

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 20 / 34

Folding-in: Term

q new terms

folding-in a new term vector, t, into the existing LSI projection
model, a projection, t̂ is computed by

t̂ = tTVkΣ−1
k

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 21 / 34

Example: Updating

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 22 / 34

Example: Folding-in

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 23 / 34

Example: Recomputing the SVD

Simply compute the SVD of a reconstructed term-document matrix, say
Ã. Now the new term-document matrix Ã is 18× 16.
Recomputing the SVD

Ã = ŨΣ̃Ṽ T

Construct the rank-2 approximation to Ã by

Ã2 = Ũ2Σ̃2Ṽ
T
2

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 24 / 34

Example: Recomputing the SVD

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 25 / 34

Example: Difference between Folding-in and Recomputing
the SVD

Folding-in didn’t reconstruct the semantic representation in the new
database

The existing LSI didn’t take the association between behavior and
rats into consideration. Thus it fails to form the cluster M13, M14
and M15

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 26 / 34

SVD-updating: Documents

Let Dm×p denote new document vectors, B = (Ak |D), define
SVD(B) = UBΣBV

T
B . Then

UT
k B

(
Vk 0
0 Ip

)
= (Σk |UT

k D)

since Ak = UkΣkV
T
k . If F = (Σk |UT

k D) and SVD(F) = UFΣFV
T
F , then

UB = UkUF ,VB =

(
Vk 0
0 Ip

)
VF ,ΣF = ΣB

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 27 / 34

SVD-updating: Terms

Let Tq×n denote new term vectors, C =

(
Ak

T

)
, define

SVD(C) = UCΣCV
T
C . Then(

UT
k 0
0 Iq

)
CVk =

(
Σk

TVk

)

If H =

(
Σk

TVk

)
and SVD(H) = UHΣHV

T
H , then

UC =

(
Uk 0
0 Iq

)
UH ,VC = VkVH ,ΣH = ΣC

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 28 / 34

SVD-updating: Term Weight Correction

For a change of weightings in j terms, let Yj be an m× j matrix with rows
of zeros or rows of j-th order identity matrix Ij , let Zj be n× j matrix whose
columns specify the actual differences between old and new weights for
each of the j terms. The correction step is actually to compute the SVD
decomposition of W = Ak + YjZ

T
j . Define SVD(W) = UW ΣWV T

W . Then

UT
k WVk = (Σk + UT

k YjZ
T
j Vk)

If Q = (Σk + UT
k YjZ

T
j Vk) and SVD(Q) = UQΣQV

T
Q , then

UW = UkUQ ,VW = VkVQ

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 29 / 34

Example: SVD-updating

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 30 / 34

Orthogonality

One important difference between the folding-in and the SVD-updating is
the guarantee of orthogonality.

The folding-in process corrupts the orthogonality by appending
non-orthogonal submatrices.

The SVD-updating can guarantee the orthogonality.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 31 / 34

Compare Updating Methods

Computational Complexity Orthogonality

Folding-in * No
Recomputing the SVD *** Yes

SVD-updating ** Yes

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 32 / 34

References

Berry, Michael W., Susan T. Dumais, and Todd A. Letsche., 1995

Computational methods for intelligent information access.

In Supercomputing, 1995. Proceedings of the IEEE/ACM SC95 Conference (pp.
20-20). IEEE.

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 33 / 34

Thanks!

Presented by Yiyi Yin Latent Semantic Indexing September 11, 2017 34 / 34

