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Definitions and Operations: What Is Tensor

@ A tensor is a multidimensional array

@ An N-dimensional array is called N-way tensor or Nth-order tensor
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Definitions and Operations: What Is Tensor

Matrix A Tensor X
Element ajj Xiik
Subarrays | a.j(columns) a;.(rows) xjj.(Fibers) X;..(Slices)
Norm \/27;1 Jr',:l a?j \/ern:l }1:1 > k-1 Xi?k
Symmetry A= AT Xijk = Xikj = ink = Xjki = inj = ij,'
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Definitions and Operations: Subarrays

il

(a) Mode-1 (column) fibers: x5 (b) Mode-2 (row) fibers: x;x  (c) Mode-3 (tube) fibers: x:;

= lif

(a) Horizontal slices: Xi. (b) Lateral slices: X.;: () Frontal slices: X, (or X)
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Definitions and Operations: Matricization

@ Matricization, also known as unfolding or flattening, is the process of
reordering the elements of an N-way array into a matrix.

@ The mode-n matricization of a tensor X € Rh*2x--xIn is denoted by
X(n) and arranges the mode-n fibers to be the columns of the

resulting matrix.
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Definitions and Operations: Matricization

Let the frontal slices of X € R3%4%X2 pe

1 4 7 10 13
Xi=1(2 5 8 11|, Xo= |14
36 9 12 15
Then the three mode-n unfoldings are
147 10 13 16
Xy=]2 5 8 11 14 17
36 9 12 15 18
1 2 3 13 14
4 5 6 16 17
Xo=|7 8 9 19 2
10 11 12 22 23
X[l 2 3 4 5 .09
® =113 14 15 16 17 --- 21

16 19 22
17 20 23].
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Definitions and Operations: Multiplication

The n-mode (matrix) product of a tensor X € R X2XxIv with a matrix
U € R/*n is denoted by X x, U and is of size

hx...xlh—1 xJxIhp1 x...x Iy. Elementwise, we have

In
(X X Uiy sfinaonin = E Xit ip...ing Ujin
=1

Some properties:

XXmAXpaB=Xx,BxnA (m#n)

X xpnAx,B=Xx,(BA)
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Definitions and Operations: Multiplication

Kronecker product:
Given matrices A € R'*/ and B € RX*L, their Kronecker product is
denoted by A® B. The result is a matrix of size (/IK) x (JL) defined by

011B a;sB - a1/B
a1B apB - a;B
A®B=
ariB apsB -+ ap/B
=[a®b1 a®bz a1®bs - ay®br1 as®by].
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Definitions and Operations: Multiplication

Khatri-Rao product:
It is the matching columnwise Kronecker product. Given matrices
A € R/*K and B € R/*K, their Khatri-Rao product is denoted by A ® B.

The result is a matrix of size (/J) x K defined by

A@B:[al@)bl a2®b2 aK®bK].
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Definitions and Operations: Multiplication

Hadamard product:

The Hadamard product is the elementwise matrix product. Given matrices
A and B, both of size | x J, their Hadamard product is denoted by A x B.
The result is also of size | x J and defined by

ayibin  apebiz -+ aygbyy

ao1bor  a@oebas -+ aagbay
AxB= . . .

aribry  arsbrz -+ arsbry
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Definitions and Operations: Rank

An N-way tensor X € R *2xxIv is rank one if it can be written as the
outer product of N vectors, i.e.,

X =aWoa@o. .  oa

Each element is the product of the corresponding vector elements:

(V)
Bap . ap

_ 0,0

Xiviy...iy =

Xiaochen Zhang (ISyE) Tensor Decompositions and Applications September 18, 2017 12 / 34



CP Decomposition

The CP decomposition factorizes a tensor into a sum of component

rank-one tensors. For example, given a third-order tensor X € R/*/*K e
wish to write it as:

R
X ~ g a,ob,oc
r=1

where R is a positive integer and a, € R/, b, € R” and ¢, € R¥ for
r=1,...,R. Elementwise:

R
Xjjk ~2 E ajr bjrcir
r=1
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CP Decomposition

The factor matrix is the combination of the vectors from the rank-one
components:

A=a1;a2;...aR]|

Then the CP model can be expressed as:

R
X~[AB,C]=) aoboc
r=1

If we normalize matrices to length one:

R
X ~[NAB,C| Ez/\,arobrocr
r=1
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CP Decomposition: Rank

@ The rank of a tensor X, denoted rank(X), is defined as the smallest
number of rank-one tensors that generate X as their sum. In other
words, this is the smallest number of components in an exact CP
decomposition.

@ An exact CP decomposition with R = rank(X) components is called
the rank decomposition.

© The definition of tensor rank is an exact analogue to the definition of
matrix rank.
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CP Decomposition: Rank

@ The rank of a real-valued tensor may actually be different over R and
C.
Here are frontal slices of a tensor:

10 0 1
Xlz{o 1] and Xzz{_l 0].

The rank decomposition over R:

The rank decomposition over C:

A:%[_li 1] B:%[; _IJ and C:[l. 1.].
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CP Decomposition: Rank

@ There is no straightforward algorithm to determine the rank of a
specific given tensor. The problem is NP-hard.

@ Tensors may have different maximum and typical ranks.
@ The maximum rank is defined as the largest attainable rank.

@ The typical rank is any rank that occurs with probability greater than
zero (i.e., on a set with positive Lebesgue measure).

For the collection of / x J matrices, the maximum and typical ranks
are identical and equal to min{/, J}. For tensors, the two ranks may
be different. Moreover, over R, there may be more than one typical
rank, whereas there is always only one typical rank over C.

Xiaochen Zhang (ISyE) Tensor Decompositions and Applications September 18, 2017 17 / 34



CP Decomposition: Rank Decomposition

@ Higher-order tensors is that their rank decompositions are often
unique, whereas matrix decompositions are not.
Let X € R/ be a matrix of rank R. Then a rank decomposition of
this matrix is

R
X:ABT:Zarobr
r=1

If the SVD of X is ULV T, then we can choose A= UXW and
B = VW, where W is some R x R orthogonal matrix.
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CP Decomposition: Rank Decomposition

The k-rank of a matrix A, denoted k4, is defined as the maximum value k
such that any k columns are linearly independent.

A sufficient condition for uniqueness for CP decomposition of a three-way
tensor is:

ka+ kg + ke > 2R +2
For N-way tensor, the condition is:

N
> kaw = 2R+ (N —1)

n=1

For a given Three-way tensor, its CP decomposition is deterministically or
generically (i.e., with probability one) unique if

R<K and R(R—1)<I(I—1)J(J—1)/2
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CP Decomposition: Low Rank Approximation

Let R be the rank of a matrix A and assume its SVD is given by

R
A:ZU,U,OV, with o1 >00>...>20r>0
r=1

Then a rank-k approximation that minimizes ||A — B|| is given by

k
B = E OrU, OV,
r=1
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CP Decomposition: Low Rank Approximation

The best rank-k approximation may not exist.

Rank 2 Rank 3
*Y

» X"

o o %0
x© x® X

Border rank: the minimum number of rank-one tensors that are sufficient
to approximate the given tensor with arbitrarily small nonzero error.

r;.;k(I) = min{ r | for any € > 0, there exists a tensor €

such that ||€|| < € and rank(X + &) =r }.
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CP Decomposition: Computing Decomposition

Algorithm:

procedure CP-ALS(X,R)
initialize A(™) € RI»*R forn =1,...,N
repeat
forn=1,...,N do
Ve AMTAQ) 4. . 4 A—DTAM=1) 4 AMFDT A+ ... 4 AT AN)
AM  XMWAM ... At g A= 5...0 AWV
normalize columns of A(™) (storing norms as X)
end for
until fit ceases to improve or maximum iterations exhausted
return A, A, A®) [ AN
end procedure

Use three-way tensor as an example:

R
min|[X-%|| with X=3 Aarobroc,=[;A,B,C].
X

r=1
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CP Decomposition: Computing Decomposition

@ Simple to understand and implement
@ The potential for numerical ill-conditioning
© Taking many iterations to converge

© Not guaranteed to converge to a global minimum or even a stationary
point

© Heavily dependent on the starting guess
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CP Decomposition: Application

Discussion tracking in email [Bader et al., 2008]:
@ Term-author-time array
Q X =~ Z;:IA’OB/O C/

© 25-component decomposition, each rank one tensor refers to a topic

Group _Jan__Feb _War__Apr__May June July Aug Sept _Oct __Nov__Dec_

1

® N & o & © N
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Tucker Decomposition

Tucker decomposition is a form of higher-order PCA. A three-way tensor
X € R!*I*K is decomposed as:

R

P Q
X=Gx1Ax2BxsC=3 >3 g a,0b0c, =[5;A,B,C].
p=1lg=1r=1

where A € R'*P B € R/*Q, C € RK*R are factor matrices which are
usually orthogonal and G € RP*@*R is core tensor.
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T Decomposition

Elementwise, the Tucker decomposition is:

P Q R
Xijk = Z Z E :gpqraipquckr
p=1qg=1r=1
S &7
B
g
X ~ A
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T r Decomposition

Higher order decomposition:

X=Gx; AD x, A@ ... xy AN = IS ;A(l),A(m,___’A(N)H

The matricized version:

Xy =AMG AN @ 0 AT g A D g...0 AL)T,
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er Decomposition: Computing Decomposition

Algorithm1:

procedure HOSVD(X,R1,R3,...,Ry)
forn=1,...,N do
AM — R, leading left singular vectors of X ;)
end for
G Ax1 ADT x; ADT... x\y AT
return G,AM AR AW
end procedure

When R, < rank,(X), for one or more n, where rank,(X) is the column
rank of X(,,), then the decomposition is called truncated HOSVD.
Truncated HOSVD is not optimal in terms of giving the best fit as

measured by the norm of the difference, but it is a good starting point for
ALS.
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Tucker Decomposition: Computing Decomposition

Formulation:

oA X194, A

. RyXRpX X R
subject to G € RF*R2X xRy

A™ g R™*F» and columnwise orthogonal for n=1,...,N.

Algorithm2:

procedure HOOI(X,R1,Rz,..., RN)
initialize A(™) € RInXR for n = 1,..., N using HOSVD
repeat
forn=1,...,N do
Y Xx; AT x, ; A(R-DT Xn+1 AT XN AT
A™ — R, leading left singular vectors of Y,
end for
until fit ceases to improve or maximum iterations exhausted
G Xx; AT x, AAT... XN A )
return G,A(D, A®?) A
end procedure
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Tucker Decomposition: Application

Classifying hand-written digits [Savas and Eldén, 2007]:
QO A=TxUxVxW
Q@ Let A, =T(,;,v) x Ux V, then A=K _A, xw,
@ Solve min, ||D — S2K_ ol Al|
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Other Decompositions: PARAFAC2

It is a variant of CP that can be applied to a collection of matrices that
each have the same number of columns but a different number of rows.
We have a set of matrices X) for k =1,..., K such that each X is of size

/kXJ.
Xe~ US VT k=1,...K

where Uy is an [, X R matrix, Sk is an R x R diagonal matrix and V is a
J x R factor matrix that does not vary with k.

~ -
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Q@ Matlab:
o Dense multidimensional arrays and elementwise manipulation on tensors
o External toolboxes: N-way Toolbox, CuBatch, PLSToolbox, Tensor
Toolbox

@ Mathematica: sparse tensors
© Multilinear Engine by Paatero: supports CP, PARAPAC2 and more

@ CH+: HUJI Tensor Library, supports inner product, addition,
elementwise multiplication
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Thank you!
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