A randomized algorithm for a tensor-based generalization of the singular value decomposition

## Review of tensor algebra

- n -mode (matrix) product of a tensor

$$
\boldsymbol{y}=\boldsymbol{X} \times_{n} \mathbf{U} \quad \Leftrightarrow \quad \mathbf{Y}_{(n)}=\mathbf{U} \mathbf{X}_{(n)} .
$$



## Tucker form



$$
\boldsymbol{X}=\mathcal{G} \times_{1} \mathbf{A}^{(1)} \times_{2} \mathbf{A}^{(2)} \cdots \times_{N} \mathbf{A}^{(N)}=\llbracket \mathcal{G} ; \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(N)} \rrbracket
$$

procedure $\operatorname{HOSVD}\left(\mathcal{X}, R_{1}, R_{2}, \ldots, R_{N}\right)$

$$
\text { for } n=1, \ldots, N \text { do }
$$

$\mathbf{A}^{(n)} \leftarrow R_{n}$ leading left singular vectors of $\mathbf{X}_{(n)}$ end for
$\mathcal{G} \leftarrow \boldsymbol{X} \times_{1} \mathbf{A}^{(1) \mathrm{T}} \times_{2} \mathbf{A}^{(2) \mathrm{T}} \ldots \times_{N} \mathbf{A}^{(N) \top}$ return $\mathcal{G}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(N)}$
end procedure

## TensorSVD Algorithm

## TensorSVD Algorithm

Data : tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}, k_{i}, 1 \leq k_{i} \leq n_{i}, i=1, \ldots, d$.
Result : matrices $U_{[i], k_{i}} \in \mathbb{R}^{n_{i} \times k_{i}}$ for all $i=1, \ldots, d$ such that

$$
\mathcal{A} \approx \mathcal{A} \times_{1} U_{[1], k_{1}} U_{[1], k_{1}}^{T} \times{ }_{2} U_{[2], k_{2}} U_{[2], k_{2}}^{T} \times_{3} \cdots \times_{d} U_{[d], k_{d}} U_{[d], k_{d}}^{T}
$$

for $i=1, \ldots, d$ do
Compute the top $k_{i}$ left singular vectors of $A_{[i]}$ and denote them by $U_{[i], k_{i}}$;
end

## Error bound:

$\mathscr{E}=\mathscr{A}-\mathscr{A} \times_{1} U_{[1], k_{1}} U_{[1], k_{1}}^{\mathrm{T}} \times_{2} \cdots \times_{d} U_{[d], k_{d}} U_{[d], k_{d}}^{\mathrm{T}} \leqslant \sum_{i=1}^{d}\left\|A_{[i]}-\left(A_{[i]}\right)_{k_{i}}\right\|_{\mathrm{F}}$.

## Approximate tensor SVD

ApproxTensorSVD Algorithm
Data : tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}, c_{i}, 1 \leq c_{i} \leq \prod_{j=1, j \neq i}^{d} n_{j}, i=1, \ldots, d$.
Result : matrices $C_{[i]} \in \mathbb{R}^{n_{i} \times c_{i}}$ for all $i=1, \ldots, d$ such that

$$
\mathcal{A} \approx \mathcal{A} \times{ }_{1} C_{[1]} C_{[1]}^{+} \times{ }_{2} C_{[2]} C_{[2]}^{+} \times_{3} \cdots \times_{d} C_{[d]} C_{[d]}^{+}
$$

for $i=1, \ldots, d$ do
Form $C_{[i]}$ by calling

- the SelectColumnsSinglePass algorithm with input $A_{[i]}$ and $c_{i}$, or
- the SelectColumnsMultiPass algorithm with input $A_{[i]}, c_{i}$, and $t$;
end


## Randomized column selection algorithms

- If $A$ is well approximated by a low-rank matrix, we would like

$$
A \approx P_{\text {span }(C)} A
$$

- Two randomized column selection algorithms

1. SelectColumnsSinglePass algorithm
"Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication." SIAM Journal on Computing (2006).
2. SelectColumnsMultiPass algorithm
"Matrix approximation and projective clustering via iterative sampling." (2005).

## Select ColumnsSinglePass Algorithm

Data $: A \in \mathbb{R}^{m \times n}, c \in \mathbb{Z}^{+}$s.t. $1 \leq c \leq n$.
Result : $C \in \mathbb{R}^{m \times c}$, s.t. $C C^{+} A \approx A$.
Compute (for some positive $\beta \leq 1$ ) probabilities $\left\{p_{i}\right\}_{i=1}^{n}$ s.t.

$$
p_{i} \geq \beta\left|A^{(i)}\right|^{2} /\|A\|_{F}^{2}
$$

where $A^{(i)}$ is the $i$-th column of $A$ as a column vector.
$S=\{ \} ;$
for $t=1, \ldots, c$ do
Pick $i_{t} \in\{1, \ldots, n\}$ with $\operatorname{Pr}\left[i_{t}=\alpha\right]=p_{\alpha} ;$
$S=S \cup\left\{i_{t}\right\} ;$
end
$C=A_{S} ;$

Theorem 2. Suppose $A \in \mathbb{R}^{m \times n}$, and let $C$ be the $m \times c$ matrix constructed by sampling $c$ columns of $A$ with the SElectColumnsSinglePass algorithm. If $\eta=1+\sqrt{(8 / \beta) \log (1 / \delta)}$ for any $0<\delta<1$, then, with probability at least $1-\delta$,

$$
\left\|A-C C^{+} A\right\|_{\mathrm{F}}^{2} \leqslant\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}+\epsilon\|A\|_{\mathrm{F}}^{2}
$$

if $c \geqslant 4 \eta^{2} k /\left(\beta \epsilon^{2}\right)$.

## SelectColumnsMultiPass Algorithm

Data : $A \in \mathbb{R}^{m \times n}, c \in \mathbb{Z}^{+}$s.t. $1 \leq c \leq n, t \in \mathbb{Z}^{+}$.
Result : $C \in \mathbb{R}^{m \times t c}$, s.t. $C C^{+} A \approx A$.
$S=\{ \} ;$
for $\ell=1, \ldots, t$ do
if $\ell==1$ then
$E_{1}=A ;$
else
$E_{\ell}=A-A_{S} A_{S}^{+} A ;$
end
Compute (for some positive $\beta \leq 1$ ) probabilities $\left\{p_{i}\right\}_{i=1}^{n}$ s.t.

$$
p_{i} \geq \beta\left|E_{\ell}^{(i)}\right|^{2} /\left\|E_{\ell}\right\|_{F}^{2}
$$

where $E_{\ell}^{(i)}$ is the $i$-th column of $E_{\ell}$ as a column vector.
for $t=1, \ldots, c$ do
Pick $i_{t} \in\{1, \ldots, n\}$ with $\operatorname{Pr}\left[i_{t}=\alpha\right]=p_{\alpha} ;$
$S=S \cup\left\{i_{t}\right\} ;$
end
end
$C=A_{S} ;$

## Error bound

Theorem 3. Suppose $A \in \mathbb{R}^{m \times n}$ and let $C$ be the $m \times$ tc matrix constructed by sampling $c$ columns of $A$ in each of $t$ rounds with the SelectColumnsMultiPass algorithm. If $\eta=1+$ $\sqrt{(8 / \beta) \log (1 / \delta)}$ for any $0<\delta<1$, then, with probability at least $1-t \delta$,

$$
\left\|A-C C^{+} A\right\|_{\mathrm{F}}^{2} \leqslant \frac{1}{1-\epsilon}\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}+\epsilon^{t}\|A\|_{\mathrm{F}}^{2}
$$

if $c \geqslant 4 \eta^{2} k /\left(\beta \epsilon^{2}\right)$ columns are picked in each of the $t$ rounds.

- Proof

Let $C^{1}=A_{S_{1}}$ we have with probability at least $1-\delta$
$\left\|A-C^{1}\left(C^{1}\right)^{+} A\right\|_{\mathrm{F}}^{2} \leqslant \frac{1}{1-\epsilon}\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}+\epsilon\|A\|_{\mathrm{F}}^{2}$
Let $\left(S_{1}, \ldots, S_{t-1}\right)$ denote the set of columns picked in the first t-1 rounds.
Let $C^{t-1}=A_{\left(S_{1}, \ldots, S_{t-1}\right)}$

## Proof continue

Assume that by choosing $c \geqslant 4 \eta^{2} k /\left(\beta \epsilon^{2}\right)$ from the first $\mathrm{t}-1$ rounds we have
$\left\|A-C^{t-1}\left(C^{t-1}\right)^{+} A\right\|_{\mathrm{F}}^{2} \leqslant \frac{1}{1-\epsilon}\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}+\epsilon^{t-1}\|A\|_{\mathrm{F}}^{2}$
Holds with probability as least $1-(t-1) \delta$.
Define $E_{t}=A-C^{t-1}\left(C^{t-1}\right)^{+} A$ and let $Z$ be a matrix that are included in the sample $E_{t}$. Then with probability at least $1-\delta$
$\left\|E_{t}-Z Z^{+} E_{t}\right\|_{\mathrm{F}}^{2} \leqslant\left\|E_{t}-\left(E_{t}\right)_{k}\right\|_{\mathrm{F}}^{2}+\epsilon\left\|E_{t}\right\|_{\mathrm{F}}^{2}$
$\Longleftrightarrow\left\|E_{t}-Z Z^{+} E_{t}\right\|_{\mathrm{F}}^{2} \leqslant\left\|E_{t}-\left(E_{t}\right)_{k}\right\|_{\mathrm{F}}^{2}+\frac{\epsilon}{1-\epsilon}\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}+\epsilon^{t}\|A\|_{\mathrm{F}}^{2}$
Holds with probability at least $1-t \delta$.

## Proof continue

Since $E_{t}-Z Z^{+} E_{t}=A-C^{t}\left(C^{t}\right)^{+} A$ and

$$
\begin{aligned}
\left\|E_{t}-\left(E_{t}\right)_{k}\right\|_{\mathrm{F}}^{2} & =\left\|\left(I-C^{t-1}\left(C^{t-1}\right)^{+}\right) A-\left(\left(I-C^{t-1}\left(C^{t-1}\right)^{+}\right) A\right)_{k}\right\|_{\mathrm{F}}^{2} \\
& \leqslant\left\|\left(I-C^{t-1}\left(C^{t-1}\right)^{+}\right) A-\left(I-C^{t-1}\left(C^{t-1}\right)^{+}\right) A_{k}\right\|_{\mathrm{F}}^{2} \\
& \leqslant\left\|\left(I-C^{t-1}\left(C^{t-1}\right)^{+}\right)\left(A-A_{k}\right)\right\|_{\mathrm{F}}^{2} \\
& \leqslant\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Thus, we probability at least $1-t \delta$
$\left\|A-C C^{+} A\right\|_{\mathrm{F}}^{2} \leqslant \frac{1}{1-\epsilon}\left\|A-A_{k}\right\|_{\mathrm{F}}^{2}+\epsilon^{t}\|A\|_{\mathrm{F}}^{2}$

## Error bound of ApproxTensorSVD

Theorem 1. Let $\mathscr{A} \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}$ be a d-mode tensor, let $\beta \in(0,1]$, and let $\eta=1+$ $\sqrt{(8 / \beta) \log (1 / \delta)}$, for any $0<\delta<1$. Let matrices $C_{[i]}, i \in\{1, \ldots, d\}$, be computed by the ApproxTensorsVD algorithm (Algorithm 1).

- If the columns are chosen with the SelectColumnsSinglePass algorithm, then with probability at least $1-d \delta$

$$
\begin{aligned}
& \left\|\mathscr{A}-\mathscr{A} \times_{1} C_{[1]} C_{[1]}^{+} \times_{2} \ldots \times_{d} C_{[d]} C_{[d]}^{+}\right\|_{F} \leqslant \sum_{i=1}^{d}\left\|A_{[i]}-\left(A_{[i]}\right)_{i}\right\|_{\mathrm{F}}+d \in\|\mathscr{A}\|_{\mathrm{F}}, \\
& \text { if } c_{i} \geqslant 4 \eta^{2} k_{i} /\left(\beta \epsilon^{2}\right) \text { for all } i=1, \ldots, d .
\end{aligned}
$$

- If the columns are chosen with the SelectColumnsMultiPass algorithm, then with probability at least $1-t d \delta$

$$
\left\|\mathscr{A}-\mathscr{A} \times_{1} C_{[1]} C_{[1]}^{+} \times_{2} \cdots \times_{d} C_{[d]} C_{[d]}^{+}\right\|_{\mathrm{F}} \leqslant \frac{1}{1-\epsilon} \sum_{i=1}^{d}\left\|A_{[i]}-\left(A_{[i]}\right)_{k_{i}}\right\|_{\mathrm{F}}+d \epsilon^{t}\|\mathscr{A}\|_{\mathrm{F}}
$$

$$
\text { if } c_{i} \geqslant 4 \eta^{2} k_{i} /\left(\beta \epsilon^{2}\right) \text { for every one of the } t \text { rounds and for all } i=1, \ldots, d
$$

## Proof

- Define $\tilde{\mathscr{A}}=\mathscr{A} \times{ }_{1} C_{[1]} C_{[1]}^{+} \times{ }_{2} \cdots \times_{d} C_{[d]} C_{[d]}^{+}$

Let $\widetilde{\mathscr{E}}_{d}=\widetilde{\mathscr{E}}=\mathscr{A}-\tilde{\mathscr{A}}$ and $\widetilde{\Pi}_{i}=C_{[i]} C_{[i]}^{+}$we have

$$
\begin{aligned}
\left\|\widetilde{\mathscr{\sigma}}_{d}\right\|_{\mathrm{F}} & =\left\|\mathscr{A}-\mathscr{A} \times_{d} \widetilde{\Pi}_{d}+\mathscr{A} \times_{d} \widetilde{\Pi}_{d}-\mathscr{A} \times_{1} \widetilde{\Pi}_{1} \times_{2} \cdots \times_{d} \widetilde{\Pi}_{d}\right\|_{\mathrm{F}} \\
& \leqslant\left\|\mathscr{A}-\mathscr{A} \times_{d} \widetilde{\Pi}_{d}\right\|_{\mathrm{F}}+\left\|\left(\mathscr{A}-\mathscr{A} \times_{1} \widetilde{\Pi}_{1} \times_{2} \cdots \times_{d-1} \widetilde{\Pi}_{d-1}\right) \times_{d} \widetilde{\Pi}_{d}\right\|_{\mathrm{F}} \\
& \leqslant\left\|\mathscr{A}-\mathscr{A} \times_{d} \widetilde{\Pi}_{d}\right\|_{\mathrm{F}}+\left\|\mathscr{A}-\mathscr{A} \times_{1} \widetilde{\Pi}_{1} \times_{2} \cdots \times_{d-1} \widetilde{\Pi}_{d-1}\right\|_{\mathrm{F}},
\end{aligned}
$$

Let $\widetilde{\mathscr{E}}_{d-1}=\mathscr{A}-\mathscr{A} \times_{1} \widetilde{\Pi}_{1} \times_{2} \cdots \times_{d-1}^{-1} \widetilde{\Pi}_{d-1}$, in the same manner $\left\|\widetilde{\sigma}_{d-1}\right\|_{\mathrm{F}} \leqslant\left\|\mathscr{A}-\mathscr{A} \times_{d-1} \widetilde{\Pi}_{d-1}\right\|_{\mathrm{F}}+\left\|\mathscr{A}-\mathscr{A} \times_{1} \widetilde{\Pi}_{1} \times 2 \cdots \times_{d-2} \widetilde{\Pi}_{d-2}\right\|_{\mathrm{F}}$
Finally, we have

$$
\left\|\widetilde{\mathscr{\delta}}_{\|}\right\|_{\mathrm{F}} \leqslant \sum_{i=1}^{d}\left\|\mathscr{A}-\mathscr{A} \times_{i} \widetilde{\Pi}_{i}\right\|_{\mathrm{F}}
$$

## Restricting the approximation to matrices

$$
\widetilde{A}=C C^{+} A R^{+} R=C U R
$$

- If the columns and rows are chosen with the SelectColumnsSinglePass algorithm then, with probability at least $1-2 \delta$

$$
\left\|A-C C^{+} A R^{+} R\right\|_{\mathrm{F}} \leqslant 2\left\|A-A_{k}\right\|_{\mathrm{F}}+2 \epsilon\|A\|_{\mathrm{F}} \text { if } c, r \geqslant 4 \eta^{2} k /\left(\beta \epsilon^{2}\right) \text {. }
$$

- If the columns and rows are chosen with the SelectColumnsMultiPass algorithm then, with probability at least $1-2 t \delta$

$$
\begin{aligned}
& \left\|A-C C^{+} A R^{+} R\right\|_{\mathrm{F}} \leqslant \frac{2}{1-\epsilon}\left\|A-A_{k}\right\|_{\mathrm{F}}+2 \epsilon^{t}\|A\|_{\mathrm{F}} \\
& \text { if } c, r \geqslant 4 \eta^{2} k /\left(\beta \epsilon^{2}\right) \text { in each of the t passes. }
\end{aligned}
$$

