Kernel Principal Component Analysis
(Kernel PCA)

Presented by BORAM LEE

September 28, 2015

Algebraic Interpretation

« Given m points in a n dimensional space, for large n, how can
we project the points onto a 1 dimensional space?

« Choose a line that fits the data so the points are spread out well
along the line.

Principal Component Analysis 1

« PCAfinds a low-dimensional linear subspace such that when x
IS projected there information loss is minimized.

* Finds directions of maximal variance.

« Equivalent to finding eigenvalues and eigenvectors of the
covariance matrix.

Principal Component Analysis 2
A A

- PCA centers the sample and then rotates the axes to line up
with the directions of highest variance. If the variance on Z2 is
too small, it can be ignored and we have dimensionality

reduction from two to one.

Principal Component Analysis 3

Solution:

» More formally: data x = {x!}V x* ¢ R

- Center data: yt = x! — m,where m=> x'/N
» Compute the covariance matrix S = 3", yy T /N

« Diagonalize S using Spectral Decomposition: C'SC = D
where

« Cis an orthogonal (rotation) matrix satisfying
ccT = cTc = 1 (identity matrix), and

« D is a diagonal matrix whose diagonal
elements are the eigenvalues), > >)\, >0

« iith column of C is the iith eigenvector.

* Project data vectors y'to principal components z! = CT ¢
(equivalently y* = Cz?).

Ring with Center (in R?)

5
4l
2l
al ® g c&‘o
5 E‘I
a0
: o
; o ©
o
=l
‘.i 1
-1 0 1 2 3 4 5

« Two classes are not linearly separable in the input space.

Simple Mapping into R3

« We can make the problem linearly separable by a simple
mapping into R*

If we think differently ...

Problems with High Dimensionality

« Can seriously increase computation time.

 Let’s consider the product features used in the paper, which take
all possible d-th order products of the elements of the input

vector and write them into a new vector.

« 16x16 pixel input images with a monomial degree d =5 yields
10*° different monomials.

Kernel Trick

« Can we get around this problem and still get the benefit of high
dimensionality? Yes.

« Sometimes it is possible to compute dot-products without
explicitly mapping into the high dimensional feature space. We
can employ dot products of the form

A‘.(;I; ;I?f) = <(Il'(i?)1 (I)(;I?’f»
» The phi function means that we send a data into another space.

¢: X — H.x— O(x)

Kernel PCA 1

« Denote the nonlinear feature transformation here by ¢
and the set of ¢ transformed input samples by &(x;),...,?(xy)

* The covariance matrix we need in PCA is then

SRR -
o= Zl@(xj)@(Xj)T

« We must compute each eigenvalue A > 0 and eigenvector V for
the matrix satisfying \v = CV.

* It turns out the solutions V lie in the span of the data: they are
linear combinations of &¢(x;),...,®(xy) . The eigenvalue
problem becomes ANP(xy) -) = (P(xp)-CV) forall k=1,...,¢,
where

V = Zn &(x;) for some coefficients aj,...,ay

« The eigenvalue problem can be written in terms of the
coefficients!

Kernel PCA 2

» Inserting the equation for V in terms of the coefﬁcnents the
eigenvalue problem becomes (AKa = K*a where

Kis an ¢ x ¢inner-product (kernel) matrix: K;; := (®(x;) - ¢(x;))
« is a column vector with entries o, ..., ay

« To solve the eigenvalue problem, solve instead /\a = K «x
for nonzero eigenvalues.

* Principal com?onent projection directions are normalized to have

unit norm, (V*.V*) = 1. Inserting the definitions, that becomes
£

=2 B(x)) = (@ - Ka¥) = (k- o)

thus the sq_uare root of ,\;,, becomes the normalization factor for «
- To project a test point x onto the k:th eigenvector:

= ai (B(xi) - $(x))

i=1
* None of the operations require the actual transformed features,
the inner products between them are enough!

k

Kernel PCA 3

« Many interesting kernels can be defined that satisfy the
properties of an inner product between some transformed
features, but the transformed features themselves would be
expensive/impossible to compute!

« Polynomial kernel of order d: k(x,y) = (x - y)*
(corresponds to a transformation onto all products of d original
input values)

- Radial basis function: k(x,y) = exp (—||x — y|[*/(2 crf))
. SlngId kernel: k‘(X.} }’) = tanh(f‘%.[zi_'_}i) +_@1)_____ parameters of

o — the kernel

« After the kernels have been computed, computational complexity
depends on the size of the kernel matrix but not on the original
input dimensionality or the transformed input dimensionality

Polynomial Kernel Example

k(x.y) = (x.y)°

If d =2 and x,y € R?, then

my? = ([] [2])

= (X1y1'+'X2y?)2

X yi
= X3 v
i V2x1 % 1 L \@}ﬁyz 1

Radial Basis Function Example

Python Code for Radial Basis Function

def rbf{vi,v2,gamma=18}):
duv=[ui[i]-v2[i] for i in range{len{v1}))}]
1=veclength{dv)
return math.e=xx{-gamma=l}

* In high dimension, which side is the red point(v) closer to?

@ N O
°® o | PR
o _© ® oV 0
@ ‘.1. @ o O
Yiz1rbf(v,v;,10) YN rbf (v, v;,10)
M N

* We only need to compute kernel function rather dot products.

Linear PCA vs Nonlinear PCA

Zinear PCA
:‘,A R

« Using nonlinear PCA implicitly causes PCA to be done in a high-

dimensional space.

kernel

X,
X
X
X

i

X

A

PCA

= b4

Polynomial Kernel of Order d

X

 Dotted lines are contours of lines of constant feature value.

Feature Extraction for an OCR task

b feature value (®(x)V)=2XZ o k(x.X;)

o o, / \(x3 o, weights (Eigenvector coefficients)

k k k k | comparison: A(X.X;)
1 i 1 !
7/) 4 4 | sample x;, x,, X5, ...

1 Input vector x

Experiment (Polynomial Kernel)

i - .. \.
Wl 2 / N7 NK
0.5|[{1%k :fLu5 05 : 05 2\ 0557
0| [| [/ £t 0 < 0=
0.5 LI 053“\ /ﬁfosx\ /7;0533\ /?;05
2300 131 0 13 0 13 0 1= o0 1
d=1 d=2 d=3 d=4 d=5

« Displayed are contour lines of constant value of the first
principal component.

* Nonlinear kernels (d >= 2) extract features which nicely
Increase along the direction of main variance in the data.

Pattern Recognition Problem

« By using kernel PCA, a good experiment result was obtained.

Components # Error Rate (%)

1 128 8.6

2,3,4,5,6 128 6
2048 4

Essence of Kernel PCA

« Advantage

« The kernel method can be applied to any algorithm which can
be formulated solely in terms of dot products.

« The computational complexity does not grow with the
dlme_nS|o_naI1PA_ of the feature space that we are implicitly
working in. This makes it possible to work for instance in the
space of all possible d-th order products between pixels of an
image.

« Disadvantage
« Can become inefficient when a new pattern is added.

« Kernel matrix size (¢ x ¢) can become infeasible .

* Future work

« Many applications in terms of classification, regression, and
novelty detection

Reference

« Disadvantage in Kernel PCA

 Statistical Data Mining and Knowledge Discovery
(by Hamparsum Bozdogan, Jul 29, 2003)

Rewriting PCA in terms of dot products

First, we need to remember that the eigenvectors lie in the span of

T1...r, Proof:

1
Cv=— E ;-_J't;rv = \v
m 4
J=1
Thus,
T
v = m)\ Z | T Tw

= m)\ Z i ‘j

Show that (zz!)v = (z-v)x

(£y 1o ce s 1rp \ /

ol oo ce s ol A

(ririvl +r1rov2 + ...+ 1 TMUM

ToT1U] + XoXoVo + ...+ o MUM

o)

V9

\:1-‘-11-11‘-1 My . IMIM)\ UM)

\ TMT1V1 + T2V + ... - M TMUM /

((r1v1 + 2202 + ... + TMUM) 71 \

(T1v1 + 2202 + ... F UM) T2

\ (r1v1 + 22V + ... + TNMUM) TM)

(I \
i)

(riv1 + rov2 + ...+ rTMUM)

\ TN /

(- v)x

So, from before, we had

. 1 m .HT
U= mA ijl 'I.?‘I'j v

1 .
= WA Z;L(Ij V)

But (z; - v) is just a scalar, so this means that all solutions v with

A # 0 lie in the span of x1 ... 2y, 1.e.,

m
U = E A FH]
i=1

