Fisher Discriminant Analysis with Kernels

e by Mika, Ratsch, Weston, Scholkpof, Miiller

e presented by Boley.
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Discriminate between two classes

e Need to identify good set of features
e PCA: unsupervised algorithm to reduce reconstruction error
e Better to take advantage of label info

e Classical approaches: bayes classifier - requires assumptions on data distribution within
each class

e Often: assume Gaussian distribution within each class

— leads to quadratic or linear discriminants, like Fisher
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This work

e Authors propose kernel idea used in SVMs, K-PCA.

e Use in supervised Fisher's Discriminant
e Result often competitive with K SVMs.

e Dot-product in kernel space — closed form solution
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Classical Fisher Linear Discriminant

e samples from two classes: X7 = [x1,...,Xg, ]|, Xo = [Xp, 41y, Xe,40,], With £ =
0+ Cs.

e Fisher's discriminant projects all the data onto a direction w maximizing the separation
of the means along the projection while minimizing the scatter with each class

T
w' Spw
max J(w) = WIS w
where
Sp = (m; —my)(m; —my)? between cluster scatter
Sw = Yit12 0 xex, (X —my)(x —m;)"  within class scatter
m;, = 5 erx X class mean
m = Z x = “m; + 2m, global mean
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Statistical Motivation - Bayes

e Optimal Bayes assigns class based on maximum a-posteriori probability

e Simplifying assumption: each class has a normal distribution

e Measures Mahalanobis distance of a sample to class center

e Result is a quadratic separator

e With a single common Covariance matrix — linear separator

e linear separator advantage: robust against noise

e Direction of separator aligned with direction of maximal variance within each class
e Linear separator <+ Fisher's w.

e Crucial: have enough samples to get good estimate of Covariance.
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Fisher’s discriminant in feature space

e Linear discriminant is not rich enough

e \Want to keep robustness and statistical foundation while allowing richer separators
e Answer: use high-dimensional feature space F

e Map x — X = ¢(x) € F.

e Fisher's Disc. is now:

wl Spw
max J(w) = .
wl Syrw
where

S — (B S\ (R S N\T
Sp = (m; —my)(m; — my) between cluster scatter
Sw = D ic19 ek, (X —my)(X — m;)?  within class scatter
m, = 7y..gX class mean
D= 1 = Ly + %n lobal
m = ;)  X=}iy + Zmy global mean
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Kernel Function

e Need to formulate problem in terms of dot-products of input patterns

e Any solution w must lie in span of training samples x1,...,Xy in F.

o w=3]aji; =Y ayé(x;).

e Inner Product with mean: wim, = E a] E k(x;,x
XGX

A\ 4

(M;);

e Wish to optimize max J(w) = w’ Sgw / wl Syyw

e Numerator: WTSBW = (XT (Ml — MQ)(Ml — MQ)T (87

M

e Here M, is the /-vector of weighted row sums of
the kernel matrix K = {K,;} = {k(x;,%;)}i j=1...¢.
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Kernel Function 2

e Wish to optimize max J(w) = wl Spw / wl Syyw

e Denominator: wl Syw = al (K1(I —1,,)KT) + (Ko(I —14)KT) o

N

.....

.....

K = (K, Ks).
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Kernel Fisher Discriminant

e KFD is now solved by optimizing

wl Nw
max J(w) = T

e Solve by finding leading eigenvector of N 1 M [or better, solve generalized eigenproblem
Mw = ANw].

e Project new pattern x = ¢(x) onto w by

¢
(W, d(x)) = Z ak(x;,x)
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Numerical Issues

e Estimating /¢ covariance structures from ¢ samples — ill-posed.
e NN could be singular or badly conditioned
e Need capacity control in F
Solution
e Replace N with N, = N + ul.
e Effect: Makes N better conditioned
e Decreases bias in sample-based eigenvalue estimates
e Imposes regularization on ||«||?, favoring solutions with small expansion coefficients.
e Regularization effect not fully understood.

e Other forms of regularization possible.
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Illustration

Figure 1: Comparison of feature found by KFD (left) and those found by Kernel
PCA: first (middle) and second (right); details see text.
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e KFD: polynomial kernel degree two, regularized with p = 1073,
e Two classes (x’s & *’s), parabolic mirrored around axes.
e Contour lines = level sets

e KFD level sets discriminate classes well

e KPCA less so.
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Experiments

e Compare to other state-of-the-art classifiers

e KFD: Kernel Fisher Discrminant with Gaussian kernel

e Once w obtained, used 1-d linear SVM to classify
e Adaboost
e Regularized Adaboost

e SVM: Support Vector Machine with Gaussian kernel
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Data Sets

e Sources: ICI DELVE STATLOG Benchmark data sets

e Treated all as two-class problems

e 100 partitions into training/test sets (about 60%:40%)

e Hyperparameters estimated using 5-fold cross-validation over first 5 realizations

e Table shows average test error & standard deviation over 100 runs
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Results

Preliminary Experiment with USPS Digit Data

e Used 3000 training samples

e Compared KFD with KSVM, both with Gaussian kernels

e 10 class error: KFD: 3.7%, KSVM: 4.2%

In General

e Noticed: both KFD & SVM vyield optimal hyperplane in F: often former is better.
e Complexity of SVM classifier is O(supportvectors).

e Complexity of KFD classifier is O(alltrainingvectors).

e Dependence on all training vectors — maybe more robust.

e KFD: closed form solution.
Other methods involve a search or an optimization problem.

e Table on next page: 1st place in bold, 2nd place in italic (lower is better)
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Experiments

Table 1: Comparison between KFD, a single RBF classifier, AdaBoost (AB), reg-
ularized AdaBoost (ABgr) and Support Vector Machine (SVM) (see text). Best
method in bold face, second best emphasized.

- RBF AB ABp SVM KFD
Banana 10.8+0.6 | 12.3+0.7 | 10.9+£0.4 | 11.540.7 | 10.8+0.5
B.Cancer || 27.6+4.7 | 30.44+4.7 | 26.5+4.5 | 26.0+4.7 | 25.8+4.6
Diabetes 24.3+1.9 | 26.5+2.3 | 23.841.8 | 23.5+1.7 | 23.2+1.6
German 24.742.4 | 27.5+2.5 | 24.3+2.1 | 23.6+2.1 | 23.7+2.2
Heart 17.6+3.3 | 20.3+3.4 | 16.5+3.5 | 16.0+3.3 | 16.1+3.4
Image 3.3+0.6 | 2.7+0.7 | 2.7+0.6 | 32.0+06| 4.84+0.6
Ringnorm 1.7+£0.2 1.9+£0.3 | 1.6+0.1 1.740.1 | 1.540.1
F.Sonar 344420 | 35.7+1.8 | 34.2+2.2 | 32.4+1.8 | 33.2+1.7
Splice 10.0+1.0 | 10.1+0.5 | 9.54+0.7 | 10.940.7 | 10.5+0.6
Thyroid 45+2.1 | 4.4+2.2| 46+£22 | 4.8+22 | 4.2+2.1
Titanic 23.3+1.3 | 22.6+1.2 | 22.6+1.2 | 22.4+1.0 | 23.2+2.0
Twonorm || 29+03 | 3.0£03 | 2.7+0.2| 3.0+£0.2| 2.6+0.2
Waveform || 10.7+1.1 | 10.840.6 | 9.8+0.8 | 9.9+0.4 | 9.9+0.4
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Conclusions and Discussion

e Fisher's discriminant: standard linear statistical technique, but too limited.

e This is one of many approcahes to obtain more general class separability.

e Advantage: closed form solution.

e Flexibility: wide choice of kernels.

e Experimental results: competitive with many other methods.

e Complexity scales with all training samples (not just the difficult ones)
Future Work

e Suitable approximation schemes

e Numerical methods to find a few leading eigenvectors

e Multi-class discriminants

e Generalization bounds.
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Novelty Detection
Kernel PCA for Novelty Detection by Heiko Hoffman

e Novelty Detection is a one-class classification problem.
e Use training data to see typical acceptable data.
e Called One-Class because training data contains only acceptable data.

e Test data may be similar to training data or not: objective is to distinguish those that
are different.

e Abnormal examples are generally rare.
e Alternate algorithm: One-class SVM: find tightest separator from origin in F.

e Alternate algorithm: SVDD: Find smallest enclosing sphere in kernel space F.
RBF kernel leads to same as one-class SVM.

e Here we try to generate a simplified model.

e Alternate approaches: e Gaussian Mixture models, e auto-associative multilayer perceptror
e principal curves and surfaces,
All these lead to non-linear (often non-convex) optimization problems.

e Here we use PCA in kernel space to reduce dimensionality.
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Method

e Training data are mapped into an infinite-dimensional feature space.

e In this space, kernel PCA extracts the principal components of the data distribution.
Eigenvectors {v,}}_, of K with K;; = K;; — % > Kir — % > K+ # > Ko
where Kz'j = k(XZ', Xj).

e Potential: ps(z) = ||¢(z) — ¢||3 = k(z,2) — %Zk(z,xi) T % Zk(xi,xj)
i=1 0]

e Projection: fy(z) = < [qb(z) — %Z(b(xr)] ; [Vl - ¢(X)}>

where v; = /-th eigenvector & ¢(x) is center in F(both linear comb's of ¢(x;)’s).

e The squared distance to the corresponding principal subspace is the measure for

novelty:
q

p(z) = ps(z) = Y _ fe(2)?

1=1

K-LDA-slides.17.10.4.135 pl8 of[16l



Diagram

principal component ) < center?
P (x)
\V P
D (2) denoising distance

Fig. 12. The difference between the distance to be optimized in denoising
and the reconstruction error p.
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Decision Boundary Sketch

Fig. 1. Decision boundaries in the feature space of an RBF kernel,
comparing one-class SVM, SVDD, and the reconstruction error: (A) The
boundaries are illustrated in a three-dimensional feature space. All data
points @ (x;) lie on a sphere. (B) Cross-section through the center of the

SVDD sphere and orthogonal to the principal component for the situation
in A.
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Illustration

€3

b SVDD boundary

_ Principal component

One-class SVM
boundary

Origin

Y

SVDD boundary h

(B) Reconstruction-error boundary
€]

(A) Reconstruction-error boundary
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Example - classical methods

25 [ o il
2 B ..;‘:-
15 .;"'
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Example - kernel methods

Kernel PCA, polynom Kernel PCA, RBF
4 T T T T T 3 T T T T T
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Ring Square Boundary

Fig. 3. Decision boundary for the ring-line-square distribution using the
reconstruction error in .% with ¢ = 0.4 and g = 40.
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Fig. 4. Decision boundary for the spiral distribution using the reconstruc-
tion error in . with ¢ =0.25 and g = 40.
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Noisy Data - One-class SVM

One-class SVM
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Noisy Data - K-PCA

Kernel PCA
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Samples from sine curve plus uniform noise

Kernel PCA

Fig. 6. Decision boundaries for the sine-noise distribution comparing
kernel PCA (0 =0.4, ¢ =40) with the one-class SVM (6 =0.489, v= %).
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Vary Parameters: o = .05
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Vary Parameters: o = .10
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Vary Parameters: o = .40
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Real Data ROC curves : Classifier
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Real Data: vary kernel width

Digit 0 Cancer
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Real Data: vary # eigenvectors
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Most Unusual Zero Digits

PARSE I e

p=0.036 p=0033 p=0032 p=0031 p=0.023

00 @O LU

p=0.021 p=0.021 p=00i9 p=0.019 p=00I8

Fig. 11. The 10 most unusual ‘0’ digits from the MNIST test set. The
digits are arranged in descending order of their reconstruction error p
(6 =4, g =100). The figure shows the unprocessed digits of size 28 x 28
pixels; for novelty detection, however, the processed digits (8 x 8 pixels)
were used.
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Diagram

principal component

D (x)

D (2) denoising distance

Fig. 12. The difference between the distance to be optimized in denoising
and the reconstruction error p.
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