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Discriminate between two classes

• Need to identify good set of features

• PCA: unsupervised algorithm to reduce reconstruction error

• Better to take advantage of label info

• Classical approaches: bayes classifier - requires assumptions on data distribution within
each class

• Often: assume Gaussian distribution within each class

→ leads to quadratic or linear discriminants, like Fisher
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This work

• Authors propose kernel idea used in SVMs, K-PCA.

• Use in supervised Fisher’s Discriminant

• Result often competitive with K SVMs.

• Dot-product in kernel space → closed form solution
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Classical Fisher Linear Discriminant

• samples from two classes: X1 = [x1, . . . ,xℓ1 ], X2 = [xℓ1+1, . . . ,xℓ1+ℓ2 ], with ℓ =
ℓ1 + ℓ2.

• Fisher’s discriminant projects all the data onto a directionw maximizing the separation
of the means along the projection while minimizing the scatter with each class

max J(w) =
wTSBw

wTSWw

where

SB = (m1 −m2)(m1 −m2)
T between cluster scatter

SW =
∑

i=1,2

∑

x∈Xi
(x−mi)(x−mi)

T within class scatter

mi = 1

ℓi

∑

x∈Xi
x class mean

m = 1

ℓ

∑

x
x = ℓ1

ℓ
m1 +

ℓ2
ℓ
m2 global mean
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Statistical Motivation - Bayes

• Optimal Bayes assigns class based on maximum a-posteriori probability

• Simplifying assumption: each class has a normal distribution

• Measures Mahalanobis distance of a sample to class center

• Result is a quadratic separator

• With a single common Covariance matrix → linear separator

• linear separator advantage: robust against noise

• Direction of separator aligned with direction of maximal variance within each class

• Linear separator ↔ Fisher’s w.

• Crucial: have enough samples to get good estimate of Covariance.
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Fisher’s discriminant in feature space

• Linear discriminant is not rich enough

• Want to keep robustness and statistical foundation while allowing richer separators

• Answer: use high-dimensional feature space F

• Map x 7→ x̂ = φ(x) ∈ F .

• Fisher’s Disc. is now:

max J(w) =
wT ŜBw

wT ŜWw

where

ŜB = (m̂1 − m̂2)(m̂1 − m̂2)
T between cluster scatter

ŜW =
∑

i=1,2

∑

x̂∈X̂i
(x̂− m̂i)(x̂− m̂i)

T within class scatter

m̂i = 1

ℓi

∑

x̂∈X̂i
x̂ class mean

m̂ = 1

ℓ

∑

x̂
x = ℓ1

ℓ
m̂1 +

ℓ2
ℓ
m̂2 global mean
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Kernel Function

• Need to formulate problem in terms of dot-products of input patterns

• Any solution w must lie in span of training samples x̂1, . . . , x̂ℓ in F .

• w =
∑ℓ

1
αj x̂j =

∑ℓ
1
αjφ(xj).

• Inner Product with mean: wT m̂i =

ℓ∑

j=1

αj

1

ℓi

∑

x∈Xi

k(xj ,x)

︸ ︷︷ ︸

(Mi)j

.

• Wish to optimize maxJ(w) = wT ŜBw / wT ŜWw

• Numerator: wT ŜBw = α
T (M1 −M2)(M1 −M2)

T

︸ ︷︷ ︸

M

α

• Here Mi is the ℓ-vector of weighted row sums of
the kernel matrix K = {Kij} = {k(xi,xj)}i,j=1,...,ℓ.
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Kernel Function 2

• Wish to optimize maxJ(w) = wT ŜBw / wT ŜWw

• Denominator: wT ŜWw = α
T (K1(I − 1ℓ1)K

T
1 ) + (K2(I − 1ℓ2)K

T
2 )

︸ ︷︷ ︸

N

α

where K1 = {(K1)ij} = {k(xi,xj)}
j=1,...,ℓ1
i=1,...,ℓ (ℓ× ℓ1 matrix)

K2 = {(K2)ij} = {k(xi,xj)}
j=1,...,ℓ2
i=1,...,ℓ (ℓ× ℓ2 matrix)

K = (K1 , K2).
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Kernel Fisher Discriminant

• KFD is now solved by optimizing

maxJ(w) =
wTNw

wTMw
.

• Solve by finding leading eigenvector ofN−1M [or better, solve generalized eigenproblem
Mw = λNw].

• Project new pattern x̂ = φ(x) onto w by

〈w, φ(x)〉 =
ℓ∑

i=1

αik(xi,x)
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Numerical Issues

• Estimating ℓ covariance structures from ℓ samples → ill-posed.

• N could be singular or badly conditioned

• Need capacity control in F

Solution

• Replace N with Nµ = N + µI.

• Effect: Makes N better conditioned

• Decreases bias in sample-based eigenvalue estimates

• Imposes regularization on ‖α‖2, favoring solutions with small expansion coefficients.

• Regularization effect not fully understood.

• Other forms of regularization possible.
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Illustration

• KFD: polynomial kernel degree two, regularized with µ = 10−3.

• Two classes (×’s & ·’s), parabolic mirrored around axes.

• Contour lines = level sets

• KFD level sets discriminate classes well

• KPCA less so.
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Experiments

• Compare to other state-of-the-art classifiers

• KFD: Kernel Fisher Discrminant with Gaussian kernel

• Once w obtained, used 1-d linear SVM to classify

• Adaboost

• Regularized Adaboost

• SVM: Support Vector Machine with Gaussian kernel
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Data Sets

• Sources: ICI DELVE STATLOG Benchmark data sets

• Treated all as two-class problems

• 100 partitions into training/test sets (about 60%:40%)

• Hyperparameters estimated using 5-fold cross-validation over first 5 realizations

• Table shows average test error & standard deviation over 100 runs
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Results

Preliminary Experiment with USPS Digit Data

• Used 3000 training samples

• Compared KFD with KSVM, both with Gaussian kernels

• 10 class error: KFD: 3.7%, KSVM: 4.2%

In General

• Noticed: both KFD & SVM yield optimal hyperplane in F : often former is better.

• Complexity of SVM classifier is O(supportvectors).

• Complexity of KFD classifier is O(alltrainingvectors).

• Dependence on all training vectors → maybe more robust.

• KFD: closed form solution.
Other methods involve a search or an optimization problem.

• Table on next page: 1st place in bold, 2nd place in italic (lower is better)
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Experiments
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Conclusions and Discussion

• Fisher’s discriminant: standard linear statistical technique, but too limited.

• This is one of many approcahes to obtain more general class separability.

• Advantage: closed form solution.

• Flexibility: wide choice of kernels.

• Experimental results: competitive with many other methods.

• Complexity scales with all training samples (not just the difficult ones)

Future Work

• Suitable approximation schemes

• Numerical methods to find a few leading eigenvectors

• Multi-class discriminants

• Generalization bounds.
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Novelty Detection
Kernel PCA for Novelty Detection by Heiko Hoffman

• Novelty Detection is a one-class classification problem.

• Use training data to see typical acceptable data.

• Called One-Class because training data contains only acceptable data.

• Test data may be similar to training data or not: objective is to distinguish those that
are different.

• Abnormal examples are generally rare.

• Alternate algorithm: One-class SVM: find tightest separator from origin in F .

• Alternate algorithm: SVDD: Find smallest enclosing sphere in kernel space F .
RBF kernel leads to same as one-class SVM.

• Here we try to generate a simplified model.

• Alternate approaches: • Gaussian Mixture models, • auto-associative multilayer perceptrons,
• principal curves and surfaces,
All these lead to non-linear (often non-convex) optimization problems.

• Here we use PCA in kernel space to reduce dimensionality.
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Method

• Training data are mapped into an infinite-dimensional feature space.

• In this space, kernel PCA extracts the principal components of the data distribution.
Eigenvectors {vℓ}

q
ℓ=1

of K̄ with K̄ij = Kij −
1

n

∑

r Kir −
1

n

∑

r Krj +
1

n2

∑

r,sKrs

where Kij = k(xi,xj).

• Potential: pS(z) = ‖φ(z)− φ̄‖22 = k(z, z)−
2

n

n∑

i=1

k(z,xi) +
1

n2

n∑

i,j

k(xi,xj)

• Projection: fℓ(z) =

〈[

φ(z)−
1

n

n∑

r=1

φ(xr)

]

,
[
vl − φ̄(x)

]

〉

where vl = ℓ-th eigenvector & φ̄(x) is center in F(both linear comb’s of φ(xi)’s).

• The squared distance to the corresponding principal subspace is the measure for
novelty:

p(z) = ps(z)−

q
∑

i=1

fℓ(z)
2
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Diagram

Φ (x)

Φ (z)

principal component

denoising distance

p

Fig. 12. The difference between the distance to be optimized in denoising

and the reconstruction error p.

← center?
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Decision Boundary Sketch

Fig. 1. Decision boundaries in the feature space of an RBF kernel,

comparing one-class SVM, SVDD, and the reconstruction error: (A) The

boundaries are illustrated in a three-dimensional feature space. All data

points U(xi ) lie on a sphere. (B) Cross-section through the center of the

SVDD sphere and orthogonal to the principal component for the situation

in A.
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Illustration

Φ (xi)

e2

e1

e3

SVDD boundary

Principal component

Reconstruction-error boundary
(A)

f1

f2

Φ (xi)

SVDD boundary

One-class SVM

boundary

Origin

Reconstruction-error boundary(B)
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Example - classical methods

PCA
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Example - kernel methods

Kernel PCA, polynom
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Ring Square Boundary
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Fig. 3. Decision boundary for the ring-line-square distribution using the

reconstruction error in F with r = 0.4 and q = 40.
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spiral
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Fig. 4. Decision boundary for the spiral distribution using the reconstruc-

tion error in F with r = 0.25 and q = 40.
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Noisy Data - One-class SVM

One-class SVM
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Noisy Data - K-PCA

Kernel  PCA
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Samples from sine curve plus uniform noise

Kernel PCA
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Fig. 6. Decision boundaries for the sine-noise distribution comparing

kernel PCA (r=0.4, q =40) with the one-class SVM (r=0.489, m=
2
7 ).
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Vary Parameters: σ = .05
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Vary Parameters: σ = .10
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Vary Parameters: σ = .40
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Real Data ROC curves : Classifier

Digit 0 Cancer
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Real Data: vary kernel width

Digit 0 Cancer
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Real Data: vary # eigenvectors

Digit 0 Cancer
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Most Unusual Zero Digits

Fig. 11. The 10 most unusual ‘0’ digits from the MNIST test set. The

digits are arranged in descending order of their reconstruction error p

(r= 4, q = 100). The figure shows the unprocessed digits of size 28 × 28

pixels; for novelty detection, however, the processed digits (8 × 8 pixels)

were used.
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Diagram

Φ (x)

Φ (z)

principal component

denoising distance

p

Fig. 12. The difference between the distance to be optimized in denoising

and the reconstruction error p.
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