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What is Dimension Reduction?
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Dimension Reduction

Figure: High dimensional data usually have low dimensional structure
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Assume that there are n data points xi ∈ Rp, we want to find a
map Φ(x) 7→ y such that y ∈ Rd where d < p or even d� p.
Namely, we are finding a map, either linear or nonlinear, that
projects the high dimensional data points into lower dimensional
one.
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Principal Component Analysis (PCA)

Seeks an optimal low dimensional vector space that gives
smallest projection distance for the input data

The mapping is linear

The problem is formulated as follows:
Given a set of high dimensional data {xi}ni=1 where xi ∈ Rp, we
want to find a d−dimensional linear subspace L such that:

L = argminL

n∑
i=1

dist2(xi, L) (1)
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PCA 2D case

Figure: illustration of PCAYunpeng Shi Nonlinear Dimensionality Reduction
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PCA

1 Center the data set to origin.

2 Do eigenvalue decomposition for Gram matrix XTX where
X = [x1, x2, ..., xn]
Namely, K = XTX = UΛUT where U is orthogonal matrix.
Equivalently U can also be obtained by directly applying SVD
to X.

3 Let U = [U1, U2, ...Un]. then L = span{U1, U2..., Ud}
4 Project the centered data to L, we have
yi = [U1, U2..., Ud]Txi.
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PCA

Good-of-Fit Measure ∑d
i=1 λi∑n
i=1 λi
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Nonlinear Dimension Reduction and Manifold Learning

What if data structure is intrinsically nonlinear?

Figure: swiss roll data
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PCA does not work well in nonlinear case

What if data structure is intrinsically nonlinear?
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Capture nonlinearity

Kernel matrix
Each element of kernel matrix can be viewed as inner product in
feature space. namely, K(x, x′) = 〈Φ(x) ,Φ(x′)〉, where Φ(·) is a
mapping to feature space. K(x, x′) can be viewed as similarity
between x and x′. Usually, we use kernel:
1. linear kernel k(x, x′) = 〈x , x′〉
2. polynomial kernel k(x, x′) = (〈x , x′〉+ c)d

3. Gaussian kernel k(x, x′) = e−
‖x−x′‖2

2σ2
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Capture nonlinearity

Distance Matrix
For graph-based methods, usually we use pairwise distance
information to obtain adjacency matrix. The linear kernel matrix
(gram matrix XTX) can also be obtained from Euclidean distance
matrix by using double centering [4]:

K = −1

2
HD(2)H

where D(2) is the matrix of distance square, and H is centering
matrix I − 1

n11
T .

Conversely, we can also get D from Gram matrix K.
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Classical Scaling
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Isomap

Define Adjacency Matrix from Distance.

Compute geodesic distance between two nodes.

Implement MDS [4] to get embedded location.
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Isomap
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Isomap

Weakness

short-circuiting

suffer from ’holes’ in the manifold

suffern from nonconvex manifold

Applications

wood inspection

visualization of biomedical data

head pose estimation
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Kernel PCA

Weakness: focus too much on global distances
Applications: face recognition, speech recognition, and novelty
detection
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MVU

Maximum Variance Unfolding (MVU) [4]
Assume that the data are centered at the origin. The Gram matrix
XTX. Then MVU learn the kernel matrix K in the following way:
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MVU

SDP problem.

Preserve local distance.

Maximize global variance (unfolding).

Weakness: short-circuiting
Applications: sensor localization, DNA microarray data analysis
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Diffusion maps

contruct graph of data using Gaussian kernel

use the weights as transition probability to form a Markov
chain

Choose eigenvectors of transition matrix as low dimensional
representation of data
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Diffusion maps

Pr(Xt+1 = j|Xt = i) = Mij =
wij∑
i wij

, or M = D−1W

From SVD,
M = ΦΛΨT
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Diffusion maps

Truncated diffusion maps
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Diffusion maps
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Diffusion maps
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t-distributed stochastic neighbor embedding (t-SNE)

Define pairwise probabilities

Pairwise probabilties in target space

minimize Kullback-Leibler divergence
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LLE

Locally linear embedding (LLE)

Construct graph from distance matrix using KNN

Assumes that each node is a convex combination of its
neighbors (locally linear assumption)

Only need to solve two Least squares problem.
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LLE

min
wij

∑
i

‖xi −
∑

j∈N(i)

wijxj‖2

min
yi

∑
i

‖yi −
∑

j∈N(i)

wijyj‖2 s.t. ‖y(k)‖ = 1

solve for eigenvectors corresponding to d-smallest nonzero
eigenvalues of (I −W )T (I −W ).
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LLE
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LLE

Weakness

suffers from manifolds that contain holes

tends to collapse large portions of the data very close together

covariance constraint may give rise to undesired rescalings

Applications: sound source localization
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Laplacian Eigenmaps

Laplacian Eigenmaps [1]

Define similarity via Gaussian kernel e−
‖xi−xj‖

2

t .

Compute geodesic distance between two nodes.

For each pair of similar nodes, it minimize the embedded
pairwise distance

it solves the optimization problem

min
Y

∑
(i,j)

‖yi − yj‖2Wij
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Laplacian Eigenmaps

The problem above can be rewritten as:

min
Y

Tr(Y TLY )

where Y TDY = I is used to fix the scale and avoid collapsed
solution. Degree matrix D is diagonal matrix of row sum of W and
graph Laplacian L =: D −W . The standard solution for the
problem above is given by solving eigenvalue problem Lf = λDf
and m-dimensional embedding yi = [f1(i), f2(i), ...fm(i)] where fi
is the eigenvector corresponding to ith smallest eigenvalue (except
0).
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Laplacian Eigenmaps
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Laplacian Eigenmaps

Weakness: tends to collapse
Applications: face recognition, analysis of fMRI data,
semi-supervised learning
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Hessian LLE

build a graph via KNN

apply PCA for each N(xi) to find tengent spaces Si

estimate tangent Hessian Hi
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Hessian LLE

Weakness: similar to Laplacian eigenmaps and LLE
Applications: sensor localization
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Local Tangent Space Analysis (LTSA)

build a graph via KNN

apply PCA for each N(xi) to find tengent spaces Θi

there exists a linear mapping Li from the local tangent space
coordinates Θij to the low-dimensional representations yij
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Local Tangent Space Analysis (LTSA)

find eigenvectors corresponding to d smallest nonzero eigenvalues
of the symmetric matrix 1

2(B +BT )
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Local Tangent Space Analysis (LTSA)

Weakness: trivial solutions
Applications: microarray data
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Nonconvex Techniques: Sammon Mapping

Weakness: scales too much when dij small
Applications: gene and geospatial data
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Nonconvex Techniques: Multilayer Autoencoders

Weakness: tedious training
Applications: data imputation, HIV data analysis
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Nonconvex Techniques: Locally Linear Coordination (LLC)

construct mixture of m factor analyzers using EM algorithms

construct m data representations zij and their corresponding
responsibilities rij for every datapoint xi .

build n×mD matrix U that contains uij = rijzij

Model allignment:
solve Av = λBv, where A is inproduct of MTU , B = UTU ,
M = (I −W )T (I −W ) from LLE.
L = [v1, v2, · · · vd] and Y = UL.
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Nonconvex Techniques: Locally Linear Coordination (LLC)

Weakness: presence of local maxima in the log-likelihood function

Applications: images of a single person with variable pose and
expression, handwritten digits
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Nonconvex Techniques: Manifold Charting

1. find zij and rij as before.
2. find a linear mapping M from the data representations zij to the
global coordinates yi that minimizes the cost function

where yi =
∑

k yik, yij = zijM .
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Nonconvex Techniques: Manifold Charting

Can be rewritten as

where D = diag(Dj) = diag(
∑

i rijcov([Zj ,1]), uij = [rijzij ,1]
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computation complexity
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Artificial Data
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Artificial Data

Evaluate to what extent the local structure of the data is retained:

1 the generalization errors of 1-nearest neighbor classifiers
that are trained on the low-dimensional data representation.

2 trustworthiness: if low-dim points are close to each other,
does high-dim ones have the same pattern?

3 continuity: if high dimensional points are close to each other,
does the low-dim pts close to each other?
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Artificial Data
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Artificial Data
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Artificial Data
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Artificial Data

graph-based methods in general performs well

LLE/HLLE may perform less well on manifolds that are not
isometric to Euclidean space.

high generalization errors on the broken Swiss roll dataset

nonlinear techniques may have problems when they are faced
with a dataset with a high intrinsic dimensionality

strong performance on the Swiss roll dataset does not always
generalize to other dataset
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Natural Data

Dataset: MNIST, COIL20, NiSIS, ORL, HIVA
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Natural Data

Yunpeng Shi Nonlinear Dimensionality Reduction



Introduction
Literature Review

Performance Comparison
Conclusion

Full Spectral methods

graph-based methods: may suffer from short-curcuiting issue

kernel methods: choose proper kernel is an issue (suffer from
curse of dimensionality)
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Sparse spectral methods:

covariance constraint can be easily cheated

curse of dimensionality

difficulty of solving eigen problems

overfitting (data distribution),

outliers (use eps-ball instead of KNN)

real-world data violates smoothness assumption
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Nonconvex methods:

cons: may stuck at local min/max

pros: more flexibility in designing formulation, may allow
higher model complexity and tackle more variations of data.

Yunpeng Shi Nonlinear Dimensionality Reduction



Introduction
Literature Review

Performance Comparison
Conclusion

M. Belkin, and P. Niyogi. ”Laplacian eigenmaps for
dimensionality reduction and data representation.” Neural
computation 15, no. 6 (2003): 1373-1396.

L. Bin, R. Wilson, and E. Hancock. ”Spectral embedding of
graphs.” Pattern recognition 36, no. 10 (2003): 2213-2230.

S. Blake, and T. Jebara. ”Structure preserving embedding.” In
Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 937-944. ACM, 2009.

J. Kruskal, and M. Wish. Multidimensional scaling. Vol. 11.
Sage, 1978.

B. Mikhail, and P. Niyogi. ”Laplacian eigenmaps and spectral
techniques for embedding and clustering.” In NIPS, vol. 14,
pp. 585-591. 2001.

Yunpeng Shi Nonlinear Dimensionality Reduction



Introduction
Literature Review

Performance Comparison
Conclusion

B. Shaw. Graph embedding and nonlinear dimensionality
reduction. Columbia University, 2011.

B. Schlkopf, A. Smola, and K. Mller. ”Nonlinear component
analysis as a kernel eigenvalue problem.” Neural computation
10, no. 5 (1998): 1299-1319.

J. Tenenbaum ”Mapping a manifold of perceptual
observations.” Advances in neural information processing
systems (1998): 682-688.

K. Weinberger, and L. Saul. ”An introduction to nonlinear
dimensionality reduction by maximum variance unfolding.” In
AAAI, vol. 6, pp. 1683-1686. 2006.

S. Wold, E. Kim, and G. Paul. ”Principal component
analysis.” Chemometrics and intelligent laboratory systems 2,
no. 1-3 (1987): 37-52.

Yunpeng Shi Nonlinear Dimensionality Reduction



Introduction
Literature Review

Performance Comparison
Conclusion

Thanks!
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