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Graph Analysis based on Laplacian

e Many properties of a graph can be obtained or estimated from properties
of the so-called Laplacian matrix.

average hitting times, commute times.

distances or affinities between nodes.

effective resistances for passive electrical network.

relative importance of nodes on web: pagerank.

bottlenecks in computer communication networks, road networks.

minimal graph cuts.

behavior of consensus dynamics.

e Much existing theory is for undirected graphs
e Some can be extended to directed graphs.
e Much of this material is from [Boley et al., 2010].
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Undirected vs Directed graphs

Undirected Graph Directed Graph

e social networks: e the WWW: random walk on
friends and contact lists relaxed graph yields pagerank.

e passive electrical networks e road network with one-way

streets.

e recommender systems:
e.g. bipartite graph: e wireless device network with mix
users <> movies. of high and low-powered devices.

e the internet, computer
communication networks.
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Basics: Graphs and Matrices

e Graph represented by
e Adjacency Matrix A s.t. a;; # 0 when 3 an edge @ — 7.

e Markov chain transition matrix P s.t. p;; = probability of transition
from node 7 to node ;.

e Undirected graph <= symmetric adjacency matrix
<= reversible Markov chain.

e Assume no absorbing states <= strongly connected.
e Related Quantities
e d = A-1 vector of node (out) degrees,

e D = diag(d) = diagonal matrix of degrees,
T

)

e 7 = vector of stationary probabilities, s.t. w' P =7

e I = diagonal matrix of stationary probabilities,
o 7/ =(I—-P+1nx') ! = Fundamental Matrix

[Grinstead & Snell, 2006].
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Alternative Laplacians

Laplacians lead to many graph properties (many for undirected graphs)
e [*=D—-A=D(-P) ”combinatorial,” based on node degrees.

e Matrix Tree Theorem — number of spanning ‘trees’ anchored at each
node (DiGraphs too) [Brualdi & Ryser, 1991; Chebotarev & Shamis, 2006]

e smallest graph cut relative to number of nodes in each half
[Shi & Malik, 2000; Spielman & Teng, 1996; von Luxburg, 2007].

e L =1II(/ — P) "Random Walk” = L?* - vol*2 if undirected.

e pseudo-inverse leads to average commute times/resistances
[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993; Boley et al., 2011].

e pseudo-inverse leads to metric embedding in R"
[Gower & Legendre, 1986; Fouss et al., 2007].

o [P=]—P=]—-—D'1'A=D1]2 “normalized”

e smallest graph cut relative to number of edges in each half
[von Luxburg, 2007].

e (Consensus dynamics over nodes of a graph: X = —LX (DiGraphs
too). [Olfati-Saber et al., 2004, 2006], [Bamieh et al., 2008], [Young et al., 2010, 2011].

o L=DPrR[PD 2 =D R[AD = symmetrized normalized Laplacian.

e shares same eigenvalues as LP = [ — P.
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Example — Undirected Graph

01000 1 2 2
(101010\ (3\ (3\
01 01 0 0 2 1 |2
A=10 0101 0 d=1, T 2
01010 1 3 3
\1 000 1 0/ \ 2 \ 2
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Laplacians

(2 -1 0 0 0 -1\
-1 3 -1 0 -1 0
N S R TS R
"=l 0 0 -1 o2 1 o T
0 -1 0 -1 3 —I
\-1 0 0 0 -1 2/

a

e Number of spanning ‘trees’ det(Lfyq m.q) = 19
e Ligenvalues are 0, 1, 2, 3, 3, 5.

e Figenvector corresp. to 1 (Fiedler vector): (1,0,—1,—1,0,1)/2.
Used in Spectral Graph Partitioning.

e Volume = number of edges = Yytrace(L?) = 7.
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Number of Visits

e Partition P = [Pﬂ ‘ P12].

P%; ‘ Pnn

e If last row replaced with [07, 1], then [P} ];; is the probability of being
in node j starting in node ¢ at the £ — th step, before reaching n.

def

o [+ Pu+Ph+-]y=I[I-Pu) 'l =N(jn)
= = visits to j starting from ¢ before reaching n.

o (I —Py)t=1! My, (I —Pp) |7t = L1_11H1,...,n—1-

1,....n—1
\ - _J/

N~

L1

e Since L-1=0,1"L =07,
lemma (next page) yields N (7, j,n) = (my; + Mpn — Mup — My )T

e Choice of destination node n is arbitrary, so
N(?:,j, ]6) = (mz-j + My — My — mkj)ﬂ'j for all ?;,j, k.
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Lemma 1 — Inverse of Submatrix

Let L = ( L h ) be an n x n irreducible matrix s.t. nullity(L) = 1.

lr2rl lnn
Let M = LT be the pseudo-inverse of L partitioned similarly and
assume (u',1)L =0, L(v;1) = 0, where u, v are (n — 1)-vectors.

Then the inverse of the (n — 1) x (n — 1) matrix Lq; exists and is given by

def

L1_11 = X = (]n—l -+ VVT)MH(]n_l -+ uuT)
_ B My myy L
() ()

T T T
= My —mpu — vimy, + my,vu-.

If u=v =1 then [Lij']i; = mi; + Mpp — Min — M.
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Proof

e |dea: Plug prospective inverse X in to verify XL, = I:

M1 m I, _
XLy = ([n—la —V) ( ’11‘1 2 ) ( r} )Ln

Al From (u',1)L = (u'Ly; + 13, , u'lyy +1,,) = 0.

\%

1

Bl From ML =1, — ( ) (v, 1)/(v*v + 1) (ortho projector).
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Hitting and Commute Times

Adding up previous gives
o H(Z, k) = Z] N(Z,j, /{) — Mgk — Tk + Z](mw — mkj)ﬂ'j
o C(i,k) =H(i, k) + H(k, 1) = mp + mi — max — my.

e Above holds also for strongly connected directed graphs
(arbitrary Markov chain with no transient states).

e Could add along other dimensions to get betweenness measures, etc.
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Commute Times

e Pseudo inverse of L = L*/14 is a Gram matrix:

( 83

—1

7 —37
o+

M =L =30 43

—19

\ 17

e — expected commute times in random walk [(£5 metric)?]

diag(L*) - 17t
+ 1 -diag(L™)
— [t — (L+)T

14

e Red numbers: average extra cost of detour thru given node.
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—1 —37 —43 —19
A7 -1 19 -7
~1 83 17 —19

~19 17 83 -1
7 —19 —1 47

19 —43 —-37 -1

[0 11 20 21 14
11 0 11 14 9
20 11 0 11 14
21 14 11 0 11
14 9 14 11 0

\ 11 14 21 20 11

11

14 \
21
20

11
0/
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Lemma 2 — Conditionally Definite

If M is a symmetric positive semi-definite Gram matrix of inner products,
Then C = dy 11 +1d3,—2M s.t. ¢;; = my+m;;—2m;; is the conditionally
definite matrix of squared distances. |here dy; = (my1;. .. M|

Note “Conditionally definite” means x'Cx < 0 for all x L 1,

and for simplicity ¢; = 0,Vi. A typical example is a matrix of pairwise
squared /o distances.

If C is a conditionally definite matrix,

Then one can find a matching semi-definite Gram matrix M.

Note: A prospective uncentered M is given by oM = c,1' + 1c} — C,
where c; is some arbitrarily selected column out of C.

The result can be centered around the origin, yielding:

e () - S (i),

[Schoenberg, 1935; Schoenberg, 1938; Berg et al., 1984; Gower & Legendre, 1986]

Proof: AWLOG x; = 0. Then ¢y, = cp1 = |23
SO Cij — My; —+ mjj — 277%']' —= C;j1 —+ Clj — Zmz]
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Embedding

e L7 =S'S with

Sq S9 S3
( 2.5408 —.0306 —1.1326
0 1.9117 —.0588

0 0 2.2736
0 0 0
0 0 0
\ 0 0 0

e For all ’i,j, HSZ — SjH% — Cz]

Sy
—1.3163
—.7941
—.0947
2.02070
0
0

S5
—.5816
—.2941
—.9473
—.5774

1.4142
0

e Since L™1 = 0, the columns of S are already centered.
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52040 \
—.7647
—1.2315
—1.4434
—1.4142
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Example — Directed Graph

0 1.0 0 | 0.2
( 0 0 05 0 05 0 \ {2\ (0.2\

0 0 0 10 0 0 1 0.1
P=10o o 0o 0o 10 o 41| * ™ |o1
0 0 0 0 0 10 1 0.2
\1.0 0 0 0 0 0/ \1) \ 0.2 /
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Laplacian from Probabilities

e Can still obtain commute times, but from L =11 — IIP:

(02 —02 O 0 0 0\
0 02 -01 0 -01 0
S| o 0o o1 -0 0 0
0 0 0 01 —01 0
0 0 0 0 02 —02
\=02 0 0 0 0 02
(3 2 0 -2 -1 -2)
2 3 1 -1 0 -1
Mopeos| 31 6 412
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This Laplacian is only one with null vector (1, ..

1 -2 -4 6 1 0
1 0 -2 —4 3 2
1 -1 =3 =2 3

null _
» vec

., 1) on both sides.
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Hitting & Commute Times

N
W B~ OO -

\1 2

e Only nodes 3, 4 are peripheral. Others are all equally important.

C (commute times)

5 0
10 10
10 10

5 5
\ 5 5

10

0
10
10
10

(0 5 10 10

10
10

0
10
10

5 5

D 5\
10 10
10 10

0 5
5 0 )

e Same reflected in average commute times from node 2.
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Interpretations — Undirected (Graphs

e Commute times correspond to effective resistances.
[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993].

e Eigenvalues of

are 0,

[0 -
—9
1 0 —
ds L _ .
Lr=1 6 0
O _
\ -3
1/2|, 5/6, 7/6, 3/2, 2. The

3

6 -2 0 -2 0

3

0O -3 6 -3 0

2
0

1/2

0 0 0—3\

6 -3 0 0

0 -2 6 —2
0 0 -3 6/

is related to the expander

graph or Cheeger bound of the graph. [chung, 2005; Zhou et a1., 2005).

e Also|(1/2

< mixing rate for random walk over the graph.

e The corresponding eigenvector used in spectral graph partitioning
(—1,0,1,1,0,—1).
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Incidence Matrix

e The incidence matrix N has n columns and vol(G) rows. Each column
corresponds to a node (vertex) of graph G and each row corresponds to
an edge (in some arbitrary order).

e The j-th row represents the edge e; = (7, 7), and looks like
0.....0,1,0,....0,—1,0,....0

where the nonzero entries are in columns 7, j corresponding to the vertices
connected by that edge.

e Then a simple calculation shows L = D — A = NIN, where A =
adjacency matrix and D = diagonal matrix of degrees.

e |n general: if v is a vector of voltages, then Nv is the vector of currents
across each link, assuming unit conductances.
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Example Incidence Matrix

0 +1 —1
0 +1
0

—1
0 +1

—1

N —

p21 of31
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Resistances

[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993].
e Current = Incidence_matrix - Voltage (using unit resistances):

I = N -V
“1 1 0 0 0 0)
0 -1 1 0 0 0
i 0 0 -1 1 0 0 Vi
=] 0o 0o 0o -1 1 o0 ;
a 0 0 0 0 -1 1 v
1 0 0 0 0 -1
\ 0 -1 0 0 1 0)

e Kirchoft’s law: If unit current is injected between nodes ¢ & 5, then
net current through every other vertex must be zero:

e;—e; = N'i=... =N'Nv = [?v.
e Solve for voltages = v = (L*)"(e;—e;).

e Net voltage drop ¢ to j = effective resistance =
vi—v; = (ej—e;) v = (e;—e;) (L") (e;—ey).
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Resistances

e;—e; L Nullsp(N'N), so can use pseudo-inverse to find voltages.

e Solve for voltages v = (N'TIN)" - (e; —e;) = (L*)"(e; — €;).

o Effective resistance between nodes ¢ & 7 is

vi—v; = (ef —el)-v
= (ef —ej) (N'N)T - (e; —¢)
= (e —ej)- (LY -(ei—¢e)
= [(L*)"a + (L)l = (L) ]y — (L) e

e Collect matrix of effective resistances: (= commute times)
aC = diag(L*) " - 1" + 1 - diag(L*)" — (L*)T — [(L*)T]*.
e The entries C;; are squares of a Euclidean metric. (schoenberg, 1935

Schoenberg, 1938; Berg et al., 1984],
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Vector showing 2 classes

e Define v = {a,—F}" where v; = a > 0 is node 7 is in class A, and
v; = —0 < 0 if node 7 is in class B.

e Then the non-zero entries of the vector Nv are in the positions corresponding
to the edges with one end in class A and the other end in class B.

e Hence v N'Nv = v Lv = cut(A, B)(a + 5)%

v = naa® + np B2

e Also v
o Also v Dv = dpya? + dp/5?

e Here np = # vertices in class A, dy = sum of all degrees of nodes in
class A. Ditto for class B. And n = na +np = total number of vertices,
and d = da + dg = 2 times total number of edges.
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Cut relative to |nodes

o Let o® =np/na, 8% = na/ngp.

2

2

na + N n
e Then v! Lv == cut(A,B = cut(A, B ,
(A,B) ( NG ) ( )nAnB

e and viv = na(ng/na) + ng(na/ng) = n.

e Hence
viLv  cut(A,B)
— n
viv nang
o Also vl = nya — ngpB = /nang — /ngna = 0.
e Hence
vl Lv o x1 [ x
min .
viv T xl1 xTx
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Cut relative to |edges]

e Now look at minimal cut relative to the number of edges in each half.

o Let 6)42 = dB/dA, 62 = dA/dB.

da +dp\° d?
e Then v Lv == cut(A, B) ( jﬁ) = cut(A, B)dAdB,

e and v Dv = dx(dg/dp) + dg(da/dg) = d.
e Hence
viLv  cut(A,B)

= d
vl Dv dadp
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Generalized Eigenvalue Problem

e Let w= D"v. Then w''vd = v7d = ads — Bdg = 0.

e Also £v/d = D LD "/d = 0.
e The Rayleigh Quotient is

vl Lv wl Lw o x!' [x
— > min
vIDv wl'w xlvd xIx
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Relation to Random Walk

e The smallest non-zero eigenvalue of L is related to best edge-relative
cut.

e The eigenvalues of L are the same as the eigenvalues of I — P:

D hLD" =D (I — D AD " P\D» = - D 'A=1-P

e The smallest non-zero eigenvalue of L corresponds to second largest
eigenvalue of P, i.e., the mixing rate.

e The largest eigenvalue of L corresponds to the smallest (most negative)
eigenvalue of P. The latter is at least -1 (exactly -1 iff random walk is
2-cyclic, periodic). So the former is at most 2, and exactly equal to 2 iff
graph is bipartite.
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Cheeger Bounds

e Denote the eigenvalueof Las 0= <X <--- <\, < 2.

e The basic Cheeger bound is [chung, 2005]

2ha > Ao (L) = Yohg,

where
he = minimum cut relative to the edge weights,

Xo(L) = 2nd smallest eigenvalue of £L =1 — D~ 72AD~".
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Isoperimetric Constant

Definitions: [chung, 2005]

e Neighborhood of set X of nodes, N(X), is the set of nodes not in X

but with an edge to X.

. vol (N (X))
® — min
Je X:wol(X)<vol(X) UOZ(X)

2 bounds: [Chung, 2005]

2
9o
Ao > .
° 2_2d(2+290+gé)
o R VAY
e go> U Sy oY)
(1—XN)2+ % vol(X)

where N = 222 if 1 — \y < )\, — 1, and M = )\, o.w.

>\2 ‘|‘>\n
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Conclusions

e Introduced Laplacian for undirected graph
e Laplacian Related to Average Commute Times
e Laplacian Related to Electric Resistance

e Laplacian Related to mixing times and Graph Cuts.
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