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• What is image segmentation?



• *Normalized Cuts segmentation results 
of Berkeley Segmentation Dataset



• *Human Segmentation, Graph Based 
Salient Object Detection



• *K-means clustering uses the 
Normalized Cut affinity
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    Cut

• A weighted graph G = (V, E)

The Edge between Node p 
and Node q has weight

w(p, q)
p

q

w(p, q)



    Cut

• Partition V into two disjoint sets A and B by removing all 
edges connecting two parts.

p
w(p, q)

q

cut(A, B) = ∑
u∈A,v∈B

w(u, v)

A ∩ B = ∅ A ∪ B = V

• The optimal bipartitioning of a graph is the one that 
minimizes the cut.

A B



    Drawback of Using Cut

• Cut increases as the number of edges going across the two 
partitioned parts increases. 


• So the minimum cut criterion favors cutting small sets of 
isolated nodes in the graph.

cut(A, B) = ∑
u∈A,v∈B

w(u, v)



    Example of Bad Partition



    New Criterion 1: Normalized Cut

Ncut(A, B) = cut(A, B)
assoc(A, V ) + cut(B, A)

assoc(B, V )

•  


•  


• So the cut that partitions out small isolated points will no 
longer have small Ncut value.

assoc(A, V ) = ∑
u∈A,t∈V

w(u, t)

assoc(A, V ) = assos(A, A) + cut(A, B)



    New Criterion 2: Normalized Association

Nassoc(A, B) = assoc(A, A)
assoc(A, V ) + assoc(B, B)

assoc(B, V )

•  So we know:


• Hence, the two partition criteria that we seek, minimizing 
Ncut and maximizing Nassoc, are in fact identical.

Ncut(A, B) = cut(A, B)
assoc(A, V ) + cut(B, A)

assoc(B, V ) = 2 − Nassoc(A, B)



    Computing the Optimal Partition

minA,BNcut(A, B) = cut(A, B)
assoc(A, V ) + cut(B, A)

assoc(B, V )

• This is a NP-complete problem  


• Can we simplify it?



    Computing the Optimal Partition

Ncut(A, B) =
∑(xi>0,xj<0) − wijxixj

∑xi>0 di
+

∑(xi<0,xj>0) − wijxixj

∑xi<0 di

•    is an               dimensional vector,            if node   


    and               if


•                      

x N = |V | xi = 1 i ∈ A

xi = − 1 i ∈ B

di = ∑
j

w(i, j)



    Computing the Optimal Partition

•    :              diagonal matrix with    on its diagonal


•    :             symmetric weight matrix with 


•    :             vector with all ones   


•         :  vector for A                 : vector for B


•                .

N × N d

N × N W(i, j) = wij

D

W

1 N × 1
1 + x

2
1 − x

2

k =
∑xi>0 di

∑i di

4 × Ncut(A, B) = (1 + x)T(D − W )(1 + x)
k1TD1 + (1 − x)T(D − W )(1 − x)

(1 − k)1TD1

So we get:



4 × Ncut(A, B) = (1 + x)T(D − W )(1 + x)
k1TD1 + (1 − x)T(D − W )(1 − x)

(1 − k)1TD1

• Let:
b = k

1 − k
=

∑xi>0 di

∑xi<0 di

yTD1 =
n

∑
i=1

yidi = ∑
xi>0

di − b∑
xi<0

di = 0

yTDy =
n

∑
i=1

y2
i di = ∑

xi>0
di + b2 ∑

xi<0
di = b1TD1

• Then:

• Since:

Ncut(A, B) = yT(D − W )y
b1TD1 = yT(D − W )y

yTDy

y = (1 + x) − b(1 − x)
2



    Constrained Optimization Problem

• Subject to: 


• The above expression is Rayleigh quotient                         

minxNcut(x) = miny
yT(D − W )y

yTDy

y(i) ∈ {1, − b} yTD1 = 0

(D − W )y = λDy

• Minimize Ncut by solving eigenvalue system of

(yTD1 = 0)



D− 1
2 (D − W )D− 1

2 z = λz (z = D 1
2y)•   


• Smallest eigenvalue is            with eigenvector 


• Eigenvector with second smallest eigenvalue is the real 
solution to the normalized cut problem since it is 
perpendicular to 


• Eigenvector with third smallest eigenvalue is that 
optimally sub partitions the first two parts


•  …

z0 = D 1
21λ0 = 0

z0

   Normalized Laplacians



    Drawback of using higher eigenvectors

• In practice, solutions based on higher eigenvectors 
become unreliable.


• It is best to restart the algorithm and use only second 
smallest eigenvector. 
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    Recursive 2-way Grouping Algorithm

G = (V, E)

wij = e
−∥F(i) − F( j)∥22

σ2
I

+ −∥X(i) − X( j)∥22
σ2

X if ∥ X(i) − X( j) ∥2< r

• Set the weight on the edge in graph                   as:


• where        is the spatial location of node i.


•       is feature vector based on intensity, color, or texture 
information.

X(i)

F(i)



• Set the weight on the edge in graph                   as:


• Solve                          


• Use the eigenvector with the second smallest eigenvalue 
to bipartition the graph


• Recursion if needed.

(D − W )y = λDy

G = (V, E)

wij = e
−∥F(i) − F( j)∥22

σ2
I

+ −∥X(i) − X( j)∥22
σ2

X if ∥ X(i) − X( j) ∥2< r

    Recursive 2-way Grouping Algorithm



    Complexity

•           in general.


•           in actual experiment observation since: 

O(n3)

O(n 3
2)

• Sparse resulting eigensystems


• Few eigenvectors needed


• Low precision requirement



• Step 1: Use clustering algorithm to partition image into k* 
(k*>k) groups. 


• Step 2: Iteratively merge two segments if that minimizes 
the k-way Ncut criterion:

    Simultaneous K-way Cut with Multiple Eigenvectors

Ncutk = cut(A1, V − A1)
assoc(A1, V ) + cut(A2, V − A2)

assoc(A2, V ) + . . . + cut(Ak, V − Ak)
assoc(Ak, V )
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    Eigenvectors



    Partitions 



    Partition of Generated Points



    Partition of Synthetic Noisy Image



    Partition of Synthetic Joint 3-patches Image



    Partition of Weather Radar Image



    Partition of Color Image (Reproduced)



    Texture Segmentation



    Partition of Image Sequence
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Comparison with Other Eigenvector-Based Methods



Comparison Example

• A set of randomly distributed 
points in one dimension. 


• The weight is defined to be 
inversely proportional to the 
distance as:


• The paper shows results of 
segmentation using three 
different monotonically 
decreasing function

w(x) = f(d(x))



w(x) = e−( d(x)
0.1 )2



w(x) = 1 − d(x)



w(x) = e−( d(x)
0.2 )2



Comparison Example


