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Link Analysis

•Wikipedia definition - Data analysis technique to understand
the relationships between nodes & links

• Sample applications include

– Object classification - Labeling

– Object ranking - HITS, PageRank

– Prediction - Recommendation Systems

• Used in Citation analysis, Web page ranking, Social network
analysis
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EigenVector methods

• A linear transformation which changes the magnitude of vec-
tor v, v is eigenvector

• Av = λv, λ - eigenvalue, (λ, v) - eigenpair of A

• HITS & PageRank, eigenvector methods, perform Link Anal-
ysis ranking
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Stability

• Subjective Get experts from domain to validate output of
algorithms

•Objective How consistent are algorithms in a perturbed
environment

• Stability is a necessary feature is dynamic & unstable envi-
ronment as the Internet

•We evaluate objectively in this paper
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Stable algorithms are better

Figure 1: HITS under perturbation for 5 datasets

Figure 2: PageRank under perturbation for the same 5 datasets
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Experiment Overview

• Cora Database with thousands of papers & citations in AI

• Left most column is ranking on whole dataset

• Rank papers using HITS & PageRank after randomly delet-
ing 30% of data

• PageRank is stable under perturbation
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HITS algorithm Overview

• Article has high ”authority” if linked by high weight ”hubs”

• Similarly it has high hub score if it links to many authorities

• HITS algorithm

– Construct a n*n adjacency matrix

– Initialize the hubs & authorities as [1, 1, . . . , 1]T

– Iterate to convergence updating hubs & authority weights

– at+1
i = Σj:j→ih

t
j

– ht+1
i = Σj:i→ja

t+1
j
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HITS algorithm contd.

• a(t+1) = ATh(t) = (ATA)a(t)

• h(t+1) = Aa(t+1) = (AAT )h(t)

• a∗, h∗ are principal eigenvectors of ATA,AAT respectively

• This is power iteration to get a principal eigen vector
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Page Rank Algorithm overview

• The basis for Google’s initial search algorithm

• Given n interlinked pages, rank them in order of importance

• Ordering performed by computing the PR scores for pages

• Idea: Use the link structure of the web
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Page Rank continued - I

• Start with Adj Matrix A , normalize each row to get M,
probability transition matrix

• Equivalent to random surfer jumping linked web pages with
probability 1− ε, reset web page with probability ε

• ε typically 0.1 - 0.2

•Markov matrix M - column vectors are transition probabili-
ties

• xk+1 = Mxk gives a Markov Chain for xk vector.
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Page Rank continued - II

• Transition Matrix X = εU + (1− ε)M , Uij = 1
n; ∀i, j

• PR scores vector p - principal eigen vector of XT

• (εU + (1− ε)M)Tp = p
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Analysis of Algorithms - Example

• Assume algore.com has 100 links, georgebush.com has 103
links, rest are 0. Two eigen vectors, rest are 0.

• Add 5 new links pointing to both the web pages

• Original eigen vectors in Fig 1a, new Eigen Vector in 1(b)

• Small perturbations causes large change in Eigen
vectors
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Analysis of HITS algorithm

• Eigengap δ = λ1 − λ2.

•Matrix S1 in 2(a)- δ1 ≈ 0, Matrix S2 in 2(b) δ2 = 2

• Larger the δ, smaller the impact of perturbations to HITS

• Equivalent to - second or smaller EV can never be principal
EV during perturbations
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For the eigenpair (λ∗, a∗) and perturbed eigenpair(λ̃, ã),we
have the following two properties

||a∗ − ã||2 ≤ 4||E||F
δ−
√

(2)||E||F
and

|λ∗ − λ̃| ≤
√

2||E||F
Let (L2, X2) be eigen space where X2 is orthonormal
containing eigenvectors other than a∗ & L2 the diagonal
matrix of those eigen vectors; SX2 = X2L2. Similarly

||L2 − L̃2||F ≤
√

2||E||F
=⇒ λ̃2 ≤ λ2 +

√
2||E||F

We can bound the norm of the perturbation to S by

||E||F = ||S̃ − S||F ≤ k + 2
√
dk
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Theorem 1 Proof Contd.

• Substituting ||E||F in ||a∗ − ã||2 eqn, we get a bound
k ≤ (

√
d + α−

√
d)2, α = εδ

(4+
√

2ε)

• In Fig 3, we see small sub-community with links in solid
arrows; dashed arrows are after perturbation

• Principal EV is 20, by addition of new link, ã∗ is now 25.

• If a larger community exists with 20 < λ1 < 25, with
the addition of below community, λ̃1 is now from this sub-
community.

• Principal EV ã∗ now has values only for those
nodes and zeros elsewhere

16



Converse to Theorem 1

Theorem 2. Suppose S is a symmetric matrix with eigengap
δ. Then there exists a O(δ) perturbation to S that causes a
large (Ω(1)) change in the principal eigenvector.
Proof:

• Since S = ATA, using SVD decomposition

S = U

λ1 0 0
0 λ2 0
0 0 Σ

V T

• For an orthonormal col ui in U, we have S̃ = S + 2δu2u
T
2 .

||2δu2u
T
2 ||F = 2δ

• S̃ = U

λ1 0 0
0 λ2 + 2δ 0
0 0 Σ

V T

• λ̃2 = λ2 + 2δ > λ1,
=⇒ (λ̃2, u2) is the perturbed principal eigenpair.

• u2, u1 are orthonormal, so ||u2 − u1||2 = Ω(1)
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Page Rank Perturbation Analysis

• (Xt, Yt) : t ≥ 0 be two coupled Markov Chains, X0 = Y0

• At time t, reset Xt = Yt to same page with probability ε, or
if Xt−1 = Yt−1,&Xt−1 is an unperturbed page, Xt = Yt

• Otherwise Xt−1 → Xt, Yt−1 → Yt independently at random

•Xt = (εU + (1− ε)M)T ;Yt = (εU + (1− ε)M̃)T

• Resets are in lock steps to both the Markov chains but dis-
tribution of Xt = p, Yt = p̃
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Page Rank Analysis Contd.

• dt = P (Xt 6= Yt); d0 = 0, With P be set of perturbed pages

• To get a dissimilar page at t+ 1, possible only when Xt ∈ P
• P (X∞ 6= Y∞) is the upper bound d∞ ≤ Σi∈Ppi

ε

• Two random variables have d∞ chance of diverging =⇒
1
2Σi||pi − p̃i||1 < d∞
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LSI and HITS

• LSI - represent a document set and word frequency per doc-
ument in a matrix

• Group synonyms and in turn reduce subspace during Info
retrieval

• Represent doc set & words as nodes, with link from node to
doc it appears

• Apply HITS, word nodes have positive hub weights, docs
have positive authority weights

• Recall - hubs have out links , authority have in links

• Left singular vector of LSI is hub weights
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Lessons from LSI to HITS

• Corpora of English, French, Italian sets to test HITS EV
direction

• Principal EV in high dimensional space and 4(a),4(b) show
them in each language direction

•We see no order for the Eigen Vector for 15 runs even in
presence of clusters
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Experiments

• Use Cora database containing AI papers

• Choose a subset from Cora and perturb by deleting 30% of
data

• Perform 5 such runs on HITS & PageRank. Page Rank is
stable and HITS authority scores changes drastically

• Similar results on web pages
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Cora Dataset perturbations for HITS & PageRank

Figure 3: HITS experiment runs

Figure 4: Page Rank experiment runs
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Web page perturbations for HITS & PageRank
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Conclusions

• Subspace spanned by several EV is stable under perturbation
but not individually

• LSI projects data to lower subspace, stability not a priority

• Eigenvector methods sensitive to perturbation, HITS is sen-
sitive PageRank is not

• Suggest a variation of HITS - Randomized HITS
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Randomized HITS

• Combination of Markov Chain from PR & hubs, authority
score from HITS

• Equivalent to coin toss with bias ε. If heads - go to a random
webpage chosen uniformly.

• If tails, odd time step go to out-link, even timestep go to
back-link

• Random walk on web pages - odd time steps give hub score,
authority scores on even time step

• Below figure is for 3 language corpora set to see EV directions
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