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* Conventional graphical distance between two sites of
a graph

— the minimal sum of edge weights along a path between
the two sites

* Not work for some circumstances
Example: chemical bonds

Fails to indicate this chemical
distance is shorter!

* A distance function with the allowance of a mutual
influence of multiple pathways is needed. )
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A novel distance function based on electrical
network theory

— A fixed resistor is imagined on each edge

] Dgp = 2,for Gy Q@ : Q,=1+1=2 for G,
a 2
: G;_ Dgp =2, for Gy ° b !2,;,:1/(%-&-%):1 for G,,

=114l 1
Dgp = 2,for Gz Gp=1/z+3+7)
Gy
e e,

Conventional Proposed

* The proposed distance function has “multiple-
route distance diminishment” feature. 3
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Generally, for a battery delivering a current | the
voltage will be

Vap = I 2. (1.2)

")
o
0
N
@)
|
—_
S~
N
—_
_|_
W=
N—
|
SOl w

aQE%Qb G, Q=1/(1+%)=§

 How to compute effective resistance matrix for a
finite connected graph? 4
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Effective resistance — how to compute?
Resistance is a distance — why?
Resistance sum rules

Comparison

Analogue

Conclusion
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* Background ideas:
1. G-flow

A G-flow from vertex a to b of a graph G is defined to be a
function i on pairs of adjacent sites such that

by = —ly 2.1)
and
Y i, =18(x,a)-18(x,b) x € V(G), o ﬁgz.z) |
/ y \ mmm) Kirchhoff’s current law
Sums over y € V(G) adjacent to vertex x Kronecker delta
ieyly= V=, %,y € E(G), C(23)
ey =Te if €= (x,) mmm) Ohm’s law
C
Dy =0 allC, 2.4)

x~y mmm) Kirchhoff’s voltage law

6



Effective resistance

UNIVERSITY
OF MINNESOTA
Driven to Discover” @

* Background ideas:
2. Admittance (Adjacency) matrix, A

l/rx}, X~y
Ay = (x|Aly) = ‘ x,y € V(G). (2.5)
/ otherwise
. . 1 0 0
| x) is an orthonormal basis whose 1 0
elements are in one-to-one lx) = [x2) =] |xn) = |,
correspondence with the vertices of G: . . .
0 0 1
3. Degree matrix, delta
A = (x|Aly) = 8(x,3) Y 1/, (2.6)
z

\

Sums over the z € V(G) that are adjacent to vertex x

e Laplacian matrix, A - A, plays a crucial role. 7
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* LEMMAO

LEMMA 0

The matrix A— A has real eigenvalues, the minimum one of which is zero.
If G is connected, this eigenvalue is nondegenerate and the associated eigenvector

is (up to a scalar factor)

1
D=2 g = 1
1
* Consequences:
(A-A)|¢9)=0, (2.7)

A — A has no inverse.

 A-Adoes have an inverse within the subspace
orthogonal to |D). 8
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e Pseudo-inverse (generalized inverse)

denoted by Q/(A - A), where O
is the (Hermitean and idempotent) projection

1
=1- — . 2.8
Q 0 $) (¢4 (2.8)

This “resolvent” matrix {G/(A — A))} satisfies
{Q/IA-A)A-A)=(A-A)Q/A-A)) =0,
{QNA-A) O =Q(Q /A~ A)} = {Q /A - A))

and is called the generalized inverse of A - A.

(2.9)
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* Effective resistance Q.

LEMMA A

A physical G-flow from vertex a to b of a connected graph G exists, is
unique, and is given by

!
iy = 5 (=510 KA=Ala=b),

where |a - b) =|a) —|b).

THEOREM A
For a physical G-flow from a to b,

@, =(a-b|Q/(A—A)la-Db).

The result of this theorem may be cast as a more conventional matrix equality
if we introduce the diagonal matrix V with elements

Voo = 8,,(alQ KA~ A)|b). (3.6)

Then a simple rearrangement of the result of the theorem gives 0
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COROLLARY A

A graph G has a resistance matrix

Q=V[g)(¢|+|9)(¢|V-2(Q/(A-A)}.

As a consequence, all effective resistances are obtained via a matrix inversion. If
desired, the generalized inverse Q/(A — A) may be computed in terms of an ordinary
inverse: by finding the ordinary inverse to A—A+|¢)(¢|, then subtracting
19)(@1/(019)*.

For example, for the (“square”) graph G, of fig. 1, we have (for r = 1 ohm)

2 -1 0 -1 b
-1 2 -1 0 ! :
A=Al o o 2 4 a-@-c Gz
-1 0 -1 2
h d
5 -1 -3 -1

[0 3/4 1 3/4
34 0 3/4 1

1 3/4 0 3/4f
334 1 3/4 0

The traditional “series” and “paralle]” manipulations (alluded to in section 1) also

11
serve in this special case to yield {2 rather directly.
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Distance function

— A mapping p from Cartesian product V(G)xV(G) to the real
numbers such that the following axioms are satisfied:

p(b,a) 2 0,

pla,b)=0= a=01b,

pla, b) = p(b, a),

pla, x) + p(x,b) 2 p(a,b), 4.1)

Example:

oy

0 3/4 1 34

34 0 3/4 1
1 3/4 0 3/4

3/4 1 3/4 0

12
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THEOREM B

The resistance function on a graph is a distance function.

To begin the proof, we note that corollary A and the properties of the
operator A — A as appear in lemma A yield the result that £2,, is symmeiric and non-
negative with £, = 0 iff @ = b. The focus of the proof then is the triangle inequality
(on the last line of (4.1)). Let i and i’ be G-flows from g to x and from x to b
associated with potentials v and v’, respectively. Then it is easily verified that

jEi+ i’ (4.2)
is an /-flow from a to b with associated potential

w=10+v" 4.3)
Now,

182, = w, —w, = (U, — U} +{v; — 13}, (4.4)
However, the extreme values of the potential vy, must be at y=a and x, since

otherwise some other more extreme site would be either a source or a sink. Likewise,
v, is extreme at y = x and b. Thence,

12, <{v,~v )+ (v, ~v,) =102, +12, (4.5)

and the theorem follows.
13
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¢ ReSISta nce Su m ru |es With all row and column sums zeros?

THEOREM C

If G is a connected graph and Z is an arbitrary symmetric matrix, then

S (b1(A - AZ(A - A)|a)Q,, =21r(A - A)Z. Q, = (@-b|Q /A~ Ala—b).

ab

To prove this, abbreviate (A —A)Z(A — A) to X and use theorem A to obtain

Y (b1X1a)2, =2, (b|X|a) ((alQ (A - A)la)~(al|Q (A - A)|b)}. (5.D
ab a,b

The right-hand side of this equation yields two double-sum terms, the first of which
entails a factor

> (61X |a) = (91(A - A)Z(A - A)]a) =0, (5.2)
5 _
where we have recalled the eigenvector |¢) of lemma 0. Thence,

> b1X|a)Q, = =2 (b|(A = A)Z(A - A)|a)(a] A?A |b)

ab a,b
_ Qo
= =2tr(A - A)Z(A - A) A—A
= —2tr(A - A)Z, (5.3)

 This sum rule avoids the inverse of A - A. 14
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COROLLARY C1

For a connected graph,

Y (alA|b), = 2|V(G)|-D).

ab

Z=Q/(5-A)

A whole sequence of rules is obtained by taking Z as (A - A)";

COROLLARY C2

For a connected graph

Y (al(A - AY"|b)y, = -2 tr(A - A",

a,b

Z=(A-A)P

with n a non-negative integer.
For more highly symmetric graphs, these two corollaries yield nearer-neighbor

effective resistances:
Edge (vertex) transitive graph:
COROLLARY C3 every edge (vertex) has the same local
environment, so that no edge (vertex) can be
For e € E(G) of an edge-transitive graph distinguished from any other based on the
vertices and edges surrounding it
_V(@G)|-1

= ——1r,
=50 |
. . . 15
where r is the internal resistance common to all edges.
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COROLLARY C4 — Symmetric graph

For a vertex- and edge-transitive graph such that all paths of length 2 are
equivalent, the effective resistance between two next-nearest neighbor nnn sites is

2 2
L = 77 {1‘ |V(GJ|}"

where d is the common vertex degree,

Fig. 4. The cube graph, upon each edge
of which one may imagine a resistor r.

As an example, one might consider the cubic graph (of fig. 4) with equal
resistors r on each edge. Then,

_8-1__1Tr
G=T7 e
(5.4)
2 2 3r
fl,_“ = E{l_ g}f':T.
Rewming to corollary C2 with n = 2, after some manipulation one can even obtain 16

the remaining resistance of 5r/6.
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 Comparison between conventional (CD) and
resistance distances (RD)

LEMMA D

The resistance|€2,, is a nondecreasing function of the edge resistances.|This
function is constant only for those edges not lying on any path between ¢ and b.

The conventional type of graphical distance between vertices a and b of G
is [2]

. 1
Dy, = min >, e (6.2)

whence the minimum is taken over all paths x from a to b, and the sum is over all
edges of m. We have:

THEOREM D

For all distinct pairs of vertices a, b in G|D,, 2 Q,,,|with equality iff there
is but a single path between a and b.

COROLLARY D

The conventional and resistance distances are the same between every pair
of vertices of a connected graph iff the graph is a tree.

17
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Analogue

* Analogue theorems:

LEMMA E

Let x be a cut-point of a commerical graph, and let @ and b be points
occurring in different components which arise upon deletion of x. Then,

£y = s + .

The proof may be briefly indicated if we consider the assumptive circumstances
as indicated in fig. 5] If vertex a is the source of current /, then since sink b is not

Fig. 5. The general form of the graph assumed for theorem
D. Note that x but nothing to the right is included in
G, whereas x but nothing to the left is included in G,.

in the part G,, all the current from a must pass through x, so that in the G, portion,
x acts as a sink with

Ugx = 1425 7.1

Further, since the net current into x is 0, the current leaving x into part G, must
be I, whence one is led to

Uyp = I'Qxb- (72)
Addition of these two potential differences gives
Ugp = Ugx + Ugp = 1(£2 + 24), (7.3)

whereupon one obtains the theorem. 18
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Analogue

* Analogue theorems:

a block of a graph is defined to be a

maximal subgraph without cut-points
THEOREM E

If G is a connected graph with blocks G, then

cof Q(G) =[] cof G,),

det (G) = Z det L2(G,) ﬁ cof Q(Gﬁ).
o B

The proof exactly follows that for the conventional graphical distance matrix
D(G) [10] . The crucial property required (beyond that of being a distance function)
is that of lemma E.

cross out all entries sharing a
Cof: row or column with entry ay 4

Cofactors of

the minor M3 4

a matrix 1234 P 2 3 ‘H 1 2 3 Cof A;; = (=) M;;
2 2 2 4 —
4 5 6
4 5 & 4 4 49 &
78 9 19
TR o8 4 FoBR 9
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Analogue

* Analogue definitions

— Wiener index: the sum of the lengths of the shortest paths between
all pairs of vertices, which is correlated with the boiling points, density,

surface tension, etc.

W= D, (8.2)

a<bh

but for trees D,, = £2,, (as noted in corollary D), so that an extension to other
connected graphs could be

w=Y 0, (8.3)

a<bh The two isomers of butane

THEOREM F

For a connected graph with N vertices,

W’ = N tr{Q /(A - A). N

It is a simple matter of algebra to obtain

n-Butane Iscbutane

W'=%Zb(“‘b|9f(‘5"’”|“‘b)=~“{Q’m"*]"2(¢|Q’(A*A)’¢)‘(3'4) 3x1+2x2+1x3=10. 3x1+3x2=9.

However, since Q/(A— A) is null on the |¢)-space one immediately obtains the
theorem.

20
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Conclusion

* Conclusion

— A novel distance function, resistance distance, based on
circuit theory has been identified

— Some first mathematical features of resistance distance
has been developed

— The resistance distance should have chemical relevance
because of its “multiple-route distance diminishment”
features

21
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e Thanks!

22



