Resistance Distance

Rui Ma
10/30/2017

- Conventional graphical distance between two sites of a graph
- the minimal sum of edge weights along a path between the two sites
- Not work for some circumstances

Example: chemical bonds

- A distance function with the allowance of a mutual influence of multiple pathways is needed.
- A novel distance function based on electrical network theory
- A fixed resistor is imagined on each edge

Conventional

- The proposed distance function has "multipleroute distance diminishment" feature.
- Generally, for a battery delivering a current I the voltage will be

$$
\begin{equation*}
v_{a b}=I \Omega_{a b} \tag{1.2}
\end{equation*}
$$

$$
G_{1} \quad \Omega=1
$$

$$
\Omega=1 /\left(1+\frac{1}{3}\right)=\frac{3}{4}
$$

$$
\Omega=1 /\left(1+\frac{1}{2}\right)=\frac{2}{3}
$$

- How to compute effective resistance matrix for a finite connected graph?
- Effective resistance - how to compute?
- Resistance is a distance - why?
- Resistance sum rules
- Comparison
- Analogue
- Conclusion

- Background ideas:

1. G-flow

A G-flow from vertex a to b of a graph G is defined to be a function i on pairs of adjacent sites such that

- Background ideas:

2. Admittance (Adjacency) matrix, \mathbf{A}

$$
A_{x y}=(x|A| y)=\left\{\begin{array}{ll}
1 / r_{x y} & x \sim y \tag{2.5}\\
0 & \text { otherwise }
\end{array}\right\} x, y \in V(G)
$$

$\mid x)$ is an orthonormal basis whose elements are in one-to-one correspondence with the vertices of G :

$$
\left.\left.\left.\mid x_{1}\right)=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mid x_{2}\right)=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \cdots, \mid x_{n}\right)=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

3. Degree matrix, delta

$$
\begin{equation*}
\Delta_{x y}=(x|\Delta| y)=\delta(x, y) \sum_{z}^{\sim x} 1 / r_{x z} \tag{2.6}
\end{equation*}
$$

Sums over the $z \in V(G)$ that are adjacent to vertex x

- Laplacian matrix, Δ - A, plays a crucial role.

- LEMMA 0

LEMMA 0
The matrix $\Delta-A$ has real eigenvalues, the minimum one of which is zero.
If G is connected, this eigenvalue is nondegenerate and the associated eigenvector is (up to a scalar factor)

$$
|\phi\rangle \equiv \sum_{x}(x) . \quad \text { e.g. }|\emptyset\rangle=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

- Consequences:

$$
\begin{equation*}
(\Delta-A) \mid \phi)=0 \tag{2.7}
\end{equation*}
$$

$\Delta-A$ has no inverse.

- Δ - A does have an inverse within the subspace orthogonal to | \varnothing).

- Pseudo-inverse (generalized inverse)

denoted by $Q /(\Delta-A)$, where Q
is the (Hermitean and idempotent) projection

$$
\begin{equation*}
\left.\left.Q=\mathbf{1}-\frac{1}{(\phi \mid \phi)} \right\rvert\, \phi\right)(\phi \mid . \tag{2.8}
\end{equation*}
$$

This "resolvent" matrix $\{Q /(\Delta-A)\}$ satisfies

$$
\begin{align*}
& \{Q /(\Delta-A)\}(\Delta-A)=(\Delta-A)\{Q /(\Delta-A)\}=Q, \tag{2.9}\\
& \{Q /(\Delta-A)\} Q=Q\{Q /(\Delta-A)\}=\{Q /(\Delta-A)\}
\end{align*}
$$

and is called the generalized inverse of $\Delta-A$.

- Effective resistance $\Omega_{a b}$

LEMMA A
A physical G-flow from vertex a to b of a connected graph G exists, is unique, and is given by

$$
i_{x y}=\frac{I}{r_{x y}}(x-y|Q /(\Delta-A)| a-b),
$$

where $(a-b) \equiv(a)-\mid b)$.
THEOREM A
For a physical G-flow from a to b,

$$
\Omega_{a b}=(a-b|Q /(\Delta-A)| a-b) \text {. }
$$

The result of this theorem may be cast as a more conventional matrix equality if we introduce the diagonal matrix ∇ with elements

$$
\begin{equation*}
\nabla_{a b} \equiv \delta_{a b}(a|Q /(\Delta-A)| b) . \tag{3.6}
\end{equation*}
$$

Then a simple rearrangement of the result of the theorem gives

Conclusion

COROLLARY A

A graph G has a resistance matrix

$$
\Omega=\nabla \mid \phi)(\phi|+| \phi)(\phi \mid \nabla-2\{Q /(\Delta-A)\} .
$$

As a consequence, all effective resistances are obtained via a matrix inversion. If desired, the generalized inverse $Q /(\Delta-A)$ may be computed in terms of an ordinary inverse: by finding the ordinary inverse to $\Delta-A+\mid \phi)(\phi \mid$, then subtracting $\mid \phi)\left(\phi \mid /(\phi \mid \phi)^{2}\right.$.

For example, for the ("square") graph G_{2} of fig. 1 , we have (for $r=1 \mathrm{ohm}$)

$$
\begin{aligned}
& \Delta-A=\left[\begin{array}{rrrr}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right], \\
& \frac{Q}{\Delta-A}=\frac{1}{16}\left[\begin{array}{cccc}
5 & -1 & -3 & -1 \\
-1 & 5 & -1 & -3 \\
-3 & -1 & 5 & -1 \\
-1 & -3 & -1 & 5
\end{array}\right], \\
& \Omega=\left[\begin{array}{cccc}
0 & 3 / 4 & 1 & 3 / 4 \\
3 / 4 & 0 & 3 / 4 & 1 \\
1 & 3 / 4 & 0 & 3 / 4 \\
3 / 4 & 1 & 3 / 4 & 0
\end{array}\right] .
\end{aligned}
$$

The traditional "series" and "parallel" manipulations (alluded to in section 1) also serve in this special case to yield Ω rather directly.

- Distance function

- A mapping ρ from Cartesian product $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{G})$ to the real numbers such that the following axioms are satisfied:

$$
\begin{align*}
& \rho(b, a) \geq 0 \\
& \rho(a, b)=0 \Leftrightarrow a=b, \\
& \rho(a, b)=\rho(b, a), \\
& \rho(a, x)+\rho(x, b) \geq \rho(a, b), \tag{4.1}
\end{align*}
$$

Example:

$$
\Omega=\left[\begin{array}{cccc}
0 & 3 / 4 & 1 & 3 / 4 \\
3 / 4 & 0 & 3 / 4 & 1 \\
1 & 3 / 4 & 0 & 3 / 4 \\
3 / 4 & 1 & 3 / 4 & 0
\end{array}\right]
$$

THEOREM B

The resistance function on a graph is a distance function.
To begin the proof, we note that corollary A and the properties of the operator $\Delta-A$ as appear in lemma A yield the result that $\Omega_{a b}$ is symmetric and nonnegative with $\Omega_{a b}=0$ iff $a=b$. The focus of the proof then is the triangle inequality (on the last line of (4.1)). Let i and i^{\prime} be G-flows from a to x and from x to b associated with potentials v and v^{\prime}, respectively. Then it is easily verified that

$$
\begin{equation*}
j \equiv i+i^{\prime} \tag{4.2}
\end{equation*}
$$

is an I-flow from a to b with associated potential

$$
\begin{equation*}
w=v+v^{\prime} \tag{4.3}
\end{equation*}
$$

Now,

$$
\begin{equation*}
I \Omega_{a b}=w_{a}-w_{b}=\left\{v_{a}-v_{b}\right\}+\left\{v_{a}^{\prime}-v_{b}^{\prime}\right\} \tag{4.4}
\end{equation*}
$$

However, the extreme values of the potential v_{y} must be at $y=a$ and x, since otherwise some other more extreme site would be either a source or a sink. Likewise, v_{y}^{\prime} is extreme at $y=x$ and b. Thence,

$$
\begin{equation*}
I \Omega_{a b} \leq\left\{v_{a}-v_{x}\right\}+\left\{v_{x}^{\prime}-v_{b}^{\prime}\right\}=I \Omega_{a x}+I \Omega_{x b} \tag{4.5}
\end{equation*}
$$

and the theorem follows.

- Resistance sum rules

THEOREM C

If G is a connected graph and Z is an arbitrary symmetric matrix, then

$$
\sum_{a, b}(b|(\Delta-A) Z(\Delta-A)| a) \Omega_{a b}=-2 \operatorname{tr}(\Delta-A) Z .
$$

$$
\Omega_{a b}=(a-b|Q /(\Delta-A)| a-b)
$$

To prove this, abbreviate $(\Delta-A) Z(\Delta-A)$ to X and use theorem A to obtain

$$
\begin{equation*}
\sum_{a, b}(b|X| a) \Omega_{a b}=2 \sum_{a, b}(b|X| a)\{(a|Q /(\Delta-A)| a)-(a|Q /(\Delta-A)| b)\} . \tag{5.1}
\end{equation*}
$$

The right-hand side of this equation yields two double-sum terms, the first of which entails a factor

$$
\begin{equation*}
\sum_{b}(b|X| a)=(\phi|(\Delta-A) Z(\Delta-A)| a)=0, \tag{5.2}
\end{equation*}
$$

where we have recalled the eigenvector $\mid \phi)$ of lemma 0 . Thence,

$$
\begin{align*}
\sum_{a, b}(b|X| a) \Omega_{a b} & =-2 \sum_{a, b}(b|(\Delta-A) Z(\Delta-A)| a)\left(a\left|\frac{Q}{\Delta-A}\right| b\right) \\
& =-2 \operatorname{tr}(\Delta-A) Z(\Delta-A) \frac{Q}{\Delta-A} \\
& =-2 \operatorname{tr}(\Delta-A) Z \tag{5.3}
\end{align*}
$$

Conclusion

COROLLARY C1

For a connected graph,

$$
\sum_{a, b}(a|A| b) \Omega_{a b}=2(|V(G)|-1)
$$

$$
\mathrm{Z}=\mathrm{Q} /(\Delta-\mathrm{A})
$$

A whole sequence of rules is obtained by taking Z as $(\Delta-A)^{n}$;

COROLLARY C2

For a connected graph

$$
\begin{array}{ll}
\text { For a connected grapn } & \mathrm{Z}=(\Delta-\mathrm{A})^{\mathrm{n}} \\
\sum_{a, b}\left(a\left|(\Delta-A)^{n}\right| b\right) \Omega_{a b}=-2 \operatorname{tr}(\Delta-A)^{n} &
\end{array}
$$

with n a non-negative integer.
For more highly symmetric graphs, these two corollaries yield nearer-neighbor effective resistances:

COROLLARY C3
For $e \in E(G)$ of an edge-transitive graph

$$
\Omega_{e}=\frac{|V(G)|-1}{|E(G)|} r
$$

Edge (vertex) transitive graph:
every edge (vertex) has the same local
environment, so that no edge (vertex) can be distinguished from any other based on the vertices and edges surrounding it
where r is the internal resistance common to all edges.

Symmetric graph

For a vertex- and edge-transitive graph such that all paths of length 2 are equivalent, the effective resistance between two next-nearest neighbor nnn sites is

$$
\Omega_{n n n}=\frac{2}{d-1}\left\{1-\frac{2}{|V(G)|}\right\} r
$$

where d is the common vertex degree.

Fig. 4. The cube graph, upon each edge of which one may imagine a resistor r.

As an example, one might consider the cubic graph (of fig. 4) with equal resistors r on each edge. Then,

$$
\begin{align*}
& \Omega_{e}=\frac{8-1}{12} r=\frac{7 r}{12}, \tag{5.4}\\
& \Omega_{n n n}=\frac{2}{2}\left\{1-\frac{2}{8}\right\} r=\frac{3 r}{4} .
\end{align*}
$$

Returning to corollary C 2 with $n=2$, after some manipulation one can even obtain

- Comparison between conventional (CD) and resistance distances (RD)

LEMMA D

The resistance $\Omega_{a b}$ is a nondecreasing function of the edge resistances. This function is constant only for those edges not lying on any path between a and b.

The conventional type of graphical distance between vertices a and b of G is [2]

$$
\begin{equation*}
D_{a b} \equiv \min _{\pi} \sum_{e \in \pi} \frac{1}{r_{e}}, \tag{6.2}
\end{equation*}
$$

whence the minimum is taken over all paths π from a to b, and the sum is over all edges of π. We have:

THEOREM D

For all distinct pairs of vertices a, b in $G, D_{a b} \geq \Omega_{a b}$, with equality iff there is but a single path between a and b.

COROLLARY D

The conventional and resistance distances are the same between every pair of vertices of a connected graph iff the graph is a tree.

- Analogue theorems:

LEMMA E
Let x be a cut-point of a commerical graph, and let a and b be points occurring in different components which arise upon deletion of x. Then,

$$
\Omega_{a b}=\Omega_{a x}+\Omega_{x b}
$$

The proof may be briefly indicated if we consider the assumptive circumstances as indicated in fig. $5 . \mid$ If vertex a is the source of current I, then since sink b is not

Fig. 5. The general form of the graph assumed for theorem D. Note that x but nothing to the right is included in G_{a}, whereas x but nothing to the left is included in G_{b}.
in the part G_{a}, all the current from a must pass through x, so that in the G_{a} portion, x acts as a sink with

$$
\begin{equation*}
v_{a x}=I \Omega_{a x} \tag{7.1}
\end{equation*}
$$

Further, since the net current into x is 0 , the current leaving x into part G_{b} must be I, whence one is led to

$$
\begin{equation*}
v_{x b}=I \Omega_{x b} \tag{7.2}
\end{equation*}
$$

Addition of these two potential differences gives

$$
\begin{equation*}
v_{a b}=v_{a x}+v_{x b}=I\left(\Omega_{a x}+\Omega_{x b}\right) \tag{7.3}
\end{equation*}
$$

whereupon one obtains the theorem.

- Analogue theorems:

THEOREM E

If G is a connected graph with blocks G_{α}, then

$$
\underset{\uparrow}{\operatorname{cof} \Omega(G)=\prod_{\alpha} \operatorname{cof} \Omega\left(G_{\alpha}\right), ~}
$$

$$
\operatorname{det} \Omega(G)=\sum_{\alpha} \operatorname{det} \Omega\left(G_{\alpha}\right) \prod_{\beta}^{\neq \alpha} \operatorname{cof} \Omega\left(G_{\beta}\right) .
$$

The proof exactly follows that for the conventional graphical distance matrix $D(G)$ [10] . The crucial property required (beyond that of being a distance function) is that of lemma E .

the matrix \boldsymbol{A}	cross out all entries sharing a row or column with entry $\boldsymbol{a}_{\mathbf{2}, \mathbf{4}}$	the minor $\boldsymbol{M}_{\mathbf{2 , 4}}$
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \\ 4 & 5 & 6 & 4 \\ 7 & 8 & 9 & 4\end{array}\right]$	$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 2 \\ 4 & 5 & 6 & 4 \\ 7 & 8 & 9 & 4\end{array}\right]$	$\left\|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right\|$

$$
\operatorname{Cof} A_{i j} \equiv(-1)^{i+j} M_{i j}
$$

Cofactors of a matrix

- Analogue definitions

- Wiener index: the sum of the lengths of the shortest paths between all pairs of vertices, which is correlated with the boiling points, density, surface tension, etc.

$$
\begin{equation*}
W=\sum_{a<b} D_{a b} \tag{8.2}
\end{equation*}
$$

but for trees $D_{a b}=\Omega_{a b}$ (as noted in corollary D), so that an extension to other connected graphs could be

$$
\begin{equation*}
W^{\prime} \equiv \sum_{a<b} \Omega_{a b} \tag{8.3}
\end{equation*}
$$

THEOREM F
For a connected graph with N vertices,
$W^{\prime} \equiv N \operatorname{tr}\{Q /(\Delta-A\}$.

It is a simple matter of algebra to obtain

$$
W^{\prime}=\frac{1}{2} \sum_{a, b}(a-b|Q /(\Delta-A)| a-b)=N \operatorname{tr}[Q /(\Delta-A)-2(\phi|Q /(\Delta-A)| \phi) .(8.4)
$$

However, since $Q /(\Delta-A)$ is null on the $\mid \phi)$-space one immediately obtains the theorem.

- Conclusion
- A novel distance function, resistance distance, based on circuit theory has been identified
- Some first mathematical features of resistance distance has been developed
- The resistance distance should have chemical relevance because of its "multiple-route distance diminishment" features
- Thanks!

