Absorbing Random Walk Centrality

Theory and Algorithms

Yingxue Zhou

Nov. 62017

Outline

- Background
- Problem Definition
- Absorbing Random Walks
- Greedy Algorithm
- Related Algorithms
- Experiment Results

Background

\#Facebook users
\#find the k most central users in this large network
\#How about finding central users w.r.t particular users?

Background

Students at umn

Find the most central user w.r.t. umn students

Question: what does centrality mean?

Centrality

- Degree Centrality: centrality of a node is simply quantified by its degree
- Closeness centrality: the average distance of a node from all other nodes in the graph
- Betweenness cerntrality: the number of shortest paths between pairs of nodes in the graph that pass through a given node
Drawbacks: Above centrality can change dramatically with the insertion or deletion of a single edge.

Random-Walk Centrality (RWC)

- Definition: the expected first passage time of a random walk of a given node of the graph, when it starts from a random node of the graph.
- Strengths: robust when change edges in a graph

For example:

$$
\text { RWC of node } B=3^{*} 1 / 2+1^{*} 1 / 4+2^{*} 1 / 4=9 / 4
$$

Problem Formulation

-Given a graph $G=(V, E)$, where V is the set of n nodes, E is the set of m undirected edges. A subset of nodes $Q \subseteq V$, referred to the query nodes.
-Goal: Find a set C of k nodes that are central w.r.t the query nodes Q.
-The centrality of a set of nodes C w.r.t Q is based on the notion of randomwalk centrality.

The Random Walk Model on the G:

1) Starts from a node $q \in Q$;
2) Moves to a different node, following edges in G;
3) Stop until it reaches any node in C;

Note: 1.The starting node q is chosen according to distribution \mathbf{s}.
2. When the walk reaches a node c in C for the first time, it terminates and the walk is absorbed by C.
Goal: find k candidate nodes with minimum

Graph $G=(V, E)$
 absorption time.

Problem Formulation

Graph G=(V, E)

Problem Statement:
Let acq${ }_{q}^{q}(C)$ denote this expected length from q to C.
Define the absorbing random-walk centrality of a set of nodes C w.r.t. query nodes Q as:

$$
\operatorname{ac}_{Q}(C)=\sum_{q \in Q} \mathrm{~s}(q) \mathrm{ac}_{Q}^{q}(C) .
$$

How to calculate the random-walk centralit of set C regarding Q?(Compute expected length from Q to C.)

Ans: Using absorbing random walks model

Absorbing Random Walks

Goal: Calculate the expected length of a random walk from Q to C.
Define a random walk on the graph G:
-Let P be the transition matrix for a random walk, with $P(i, j)$ to be the transition probability from node i to node j in one step.
-Define $\mathrm{P}(\mathrm{c}, \mathrm{c})=1$ and $\mathrm{P}(\mathrm{c}, \mathrm{j})=0$ if $j \neq c$, for all absorbing nodes c in C .
-For the rest $\mathrm{T}=\mathrm{V} \backslash \mathrm{C}$ of non-absorbing (transient) nodes. Define the transition probability as:

$$
\mathbf{P}(i, j)= \begin{cases}\alpha \mathbf{s}(j) & \text { if } j \in Q \backslash N(i) \\ (1-\alpha) / d_{i}+\alpha \mathbf{s}(j) & \text { if } j \in N(i)\end{cases}
$$

N (i) denotes the neighbors of node i .
So the transition matrix of the random walk is written as:

Nodes in V represent the states, P defines the $\mathrm{P}=$ transition matrix. We get the random walk model! In oerder to compute expected length from Q to C. We first compute the expected length from node i to node j.in the defined
 random walk model

Absorbing Random Walks

The probability from \mathbf{i} to \mathbf{j} via I step is given by the (i,j)-entry if matrix $P^{\prime}(i, j)$. So the expected length that the random walk vist node j starting from node i is given by the (i,j)-entry of the $|\mathrm{T}| \mathrm{x}|\mathrm{T}|$ matrix:

$$
\mathbf{F}=\sum_{\ell=0}^{\infty} \mathbf{P}_{T T}^{\ell}=\left(\mathbf{I}-\mathbf{P}_{T T}\right)^{-1},
$$

The (i, j)-entry of F is the expected length of the random walk from state i to state j until it is absorbed by C .

Multi-steps

Next
Compute expected length from state i to absorption set C

Absorbing Random Walks

The expected length of a random walk that starts from node i and reaches set C is given by the i-th element of the following $n x 1$ vector:

$$
\mathbf{L}=\mathbf{L}_{C}=\binom{\mathbf{F}}{\mathbf{0}} \mathbf{1}
$$

Where I is an Tx 1 vector of all 1 s .

Absorbing Random Walks

The expected number of steps when starting from Q until being absorbed by C is obtained by summing over all query nodes:

Difficulties:

- Computing objective functions for candidate C requries an expensive matrix inversion.
- Searching for the optimal set C involves considering an exponential number of candidate sets.

How to effciently compute the random walk centrality?
ApproximateAC Algorithm

Absorbing Random Walks

Compute acq (C) via AproximateAC algorithm, which follows from the infinite-sum expansion as:

$$
\begin{array}{r}
\mathrm{ac}_{Q}(C)=\mathbf{s}^{T} \mathbf{L}_{C}=\mathbf{s}^{T}\binom{\mathbf{F}}{\mathbf{0}} \mathbf{1}=\sum_{\ell=0}^{\infty} \mathbf{x}_{\ell} \mathbf{1}, \\
\text { for } \mathbf{x}_{0}=\mathbf{s}^{T} \text { and } \mathbf{x}_{\ell+1}=\mathbf{x}_{\ell}\binom{\mathbf{P}_{T T}}{\mathbf{0}} .
\end{array}
$$

```
Algorithm 1 ApproximateAC
    Input: Transition matrix \(\mathbf{P}_{T T}\), threshold \(\epsilon\),
    starting probabilities \(\mathbf{s}\)
    Output: Absorbing centrality \(\mathrm{ac}_{Q}\)
    \(\mathbf{x}_{\mathbf{0}} \leftarrow \mathbf{s}^{T} ; \delta \leftarrow \mathbf{x}_{\mathbf{0}} \cdot \mathbf{1} ;\) ac \(\leftarrow \delta ; \ell \leftarrow 0\)
    while \(\delta<\epsilon\) do
        \(\mathbf{x}_{\ell+\mathbf{1}} \leftarrow \mathbf{x}_{\ell}\binom{\mathbf{P}_{T T}}{\mathbf{0}}\)
        \(\delta \leftarrow \mathbf{x}_{\ell+\mathbf{1}} \cdot \mathbf{1}\)
        \(\mathrm{ac} \leftarrow \mathrm{ac}+\delta\)
        \(\ell \leftarrow \ell+1\)
    return ac
```

How to select the k nodes for set C that has lowest ac?

Greedy Algorithm

- The problem of finding k nodes with minimum random walk centrality is NP-hard.
- Approximation method:

Centrality gain function:
mc : mincentrality for $\mathrm{k}=1$
gain $=m c-$ centrality, $k>1$

Note: maximize gain equals to minimize centrality.

- Greedy algorithm can guarantee (1-1/e)-appriximation for maximizing gain.

Greedy Algorithm

greedy

```
C= empty
for l=1...k
    for u in V-C
        Calculate centrality of C U {u} (*)
        Update C:= C U {best u}
    end
end
```

The complexity of greedy is $\mathbf{O}\left(\mathbf{k n}^{3}\right)$

Related Methods

- Personalized Pagerank(PPR). This is the Pagerank alorithm with a damping factor equal to the restart probability and personalization probabilities $\mathrm{s}(\mathrm{q})$. It returns the k nodes with the highest PageRank values.
- Degree centrality(Degree). Degree returns the k highest-degree nodes, being oblivious to the query nodes.
- Distance centrality(Distance). Distance returns the k nodes with the highest distance centrality w.r.t. Q.
- SpectraIQ, SpectraIC, SpectaID: Project the original graph into a low-dimenstional space so that distances between nodes in the graph correspond to distance between corresponding projected points.

SpectralC performs k-means clustering on the embedding of thecandidates nodes.
SpectralD \&SpectralQperforms k-means clustering on the embedding of the query nodes

Experiments

data

small			large		
Dataset	$\|V\|$	E	Dataset	$\|V\|$	$\|E\|$
karate	34	78	kddCoauthors	2891	2891
dolphins	62	159	livejournal	3645	4141
lesmis	77	254	ca-GrQc	5242	14496
adjnoun	112	425	ca-HepTh	9877	25998
football	115	613	roadnet	10199	13932

cannot run greedy on these

Experiments

input

Graphs from previous datasets

Query nodes:
-step1. Select s seed nodes uniformly at random.
-step2. Select a ball B(s,r) around each seed nodes s, with radius $\mathrm{r}=2$.
Step3. From all balls, select a set of query nodes with size q=10 and $q=20$, respectively for small and large datasets.

Restart probability is 0.15 , and starting probability \mathbf{s} are uniform over Q.

Experiments

small graphs

dolphins

Experiments

small graphs

adjnoun

Experiments

small graphs

karate

Experiments

large graphs

Conclusion

- Adressed the problem of finding central nodes in a graph w.r.t. a set of query nodes.
- The centrality measure is based on absorbing random walks: seek to compute k nodes that minimize the expected number of steps that a random walk will need to reach at when starts from the query nodes.
- Show the problem is NP-hard and proposed a Greedy algortihm with complexity $\mathrm{O}\left(\mathrm{kn}^{3}\right)$
- Compare related algorithms in experiments show that Greedy works well in small datasets.

The end
Thank You!

