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Motivation

• Analysis and characterization of networks offers valuable guidance in many areas
o Cell biology: gene-protein connections
o Brian: interconnection in neurological regions
o Epidemiology: epidemical contact of people
o Zoology: social interaction among animals
o Energy: electricity transport network
o Telecommunication
o WWW
o Movie database: costarring

• Networks are typically complex → the paper aim to describe complex networks with 
some simple quantities

• Network: undirected, unweighted graph with N nodes

Protein interaction network of 
Treponema pallidum



Node centrality

• Measuring networks with the concept of centrality was proposed decades ago.
• Most intuitive method: Freeman centrality (Freeman, 1979), or degree

o Counts the number of edges connecting to node i
o e is a vector with all elements being 1
o A is  the adjacency matrix of the network

• Katz centrality (Katz, 1953), an extension of Freeman centrality

o I = N-dimensional identity matrix
o α is a fixed parameter. Its upper bound is the inverse of A’s largest eigenvalue



Node centrality

• Eigenvector centrality (Bonacich, 1987), for weighted networks

o λ1 – Perron-Frobenius eigenvalue of A

o f – Perron-Frobenius eigenvector of A



Walk vs. path

• A path between node i and node j (i and j are distinct) is an ordered list of distinct

nodes i, k1, k2, …, kn-1, j, in which successive nodes are connected. 

• Walk between node i and node j is an ordered list of nodes i, k1, k2, …, kn-1, j, in 

which successive nodes are connected. 
o The start and end of a walk may be the same (i = j)

o Nodes may be revisited (k1, k2, …, kn-1 are not necessarily distinct)

• Lemma 1.1: The quantity (An)ij counts the number of different walks (i ≠ j) or closed 

walks (i = j) of length n between nodes i and j. 
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Matrix exponential: Centrality 

• Degree of node i can be alternatively interpreted by number of closed walks of 

length 2 from i

• Consider lemma 1.1, (An)ii gives the number of closed walks involving node i, which 

reflects how i is connected to the network

• Intuitively, we write the centrality of node i as 

(A2)ii + (A3)ii + (A4)ii + …

• Note that longer walks are less efficient than shorter walks. Hence, we need to add 

a weight factor to each term such that longer walks contribute less to centrality



Matrix exponential: Centrality 

• Let the weight factor be 1/(n!) with n being the walk length and add an constant bias 

(I + A) 

• Can be rewrite to

Arbitrary constant
Weighted sum of closed 
walks with all possible length



Matrix exponential: Communicability 

• Communicability quantifies the easiness for a piece of information to pass from node i to 

node j (i and j are distinct)

• A reasonable expression for communicability is sum over all walks that connect i and j. 

(A2)ij + (A3)ij + (A4)ij + …

• Again, longer walks through i and j are penalized for not being efficient. If still use 1/(n!) as 

the weight and (I + A) as bias, we have

A B
A B

1/3! + 1/3! + 1/3! = 1/2

1/2! + 1/2! = 1/2



Matrix exponential: Betweenness

• Betweenness quantifies the importance of a particular node for information flow 
within the network. Alternatively, it quantifies the change of overall communicability 
of the network if a particular node is removed.

• Denote the node to be removed as r, and let E(r) be a matrix whose components 
are nonzero only in (1) row and column r, AND (2) A has 1 in that position. Then the 
change in communicability per pair of nodes (other than r) is

o N ≥ 3
o Number of terms in the summation is (N – 1)2 – (N – 1)

• Up to now, we developed a methodology of using matrix exponential as a measure 
of a network in three aspects: centrality, communicability, and betweenness
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General rule of forming new network measures

• Assumption: the graph is connected, with N nodes. 
o There must be at least one walk of length less than N between two nodes. 

• Generally, to propose a new set of network measures, we write centrality in the 

form:

with cn ≥ 0 being the weight to scale the number of walks of length n. 

• cn = 1/(n!) is not the only way of scaling.



General rule of forming new network measures

• A complete set of network measures should have the following form:

o f-centrality: given by f(A)ii, or in terms of the spectrum of A, ∑ 𝑓(𝜆%)𝑥(
[%]+,

%-. . λ1 ≥ λ2 ≥… ≥ λN are 

the eigenvalues of A corresponding to eigenvectors x[1], x[2], …, x[N].

o f-communicability: given by f(A)ij (i and j are distinct), or ∑ 𝑓(𝜆%)𝑥(
[%],

%-. 𝑥/
[%]

o Betweenness: given by

• From the factorial weight, a new f should
o Penalize long walks (cn ≥ 0 decreases with n)

o Be a convergent series 

o Lead to a matrix function



New set of measures: matrix resolvent

• Use (N - 1)n – 1 as the weight, and c0 = N – 1. After some math, we get

rescale to 

• Resolvent centrality

• Resolvent communicability

• Resolvent betweenness
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Relation with graph Laplacian and spectral clustering

• Partition the nodes into two groups, where nodes in one group share more edges 

whereas nodes across the two groups share less edges. 
o Define xi = ½ if node i is in group A and xi = -½ if node i is in group B

o Solve for 

Set ||x||2 = 1 to eliminate trivial solution (x = 0); set ∑ 𝑥(,
(-. = 1 to avoid built-in redundancy

o Let D = diag(degi), and rewrite

o (D – A) is the graph Laplacian. The solution is the eigenvector (v[2]) with the second smallest 

eigenvalue (𝛍2), which is referred as Fiedler vector. 

Number of edges 
across the two groups



Relation with graph Laplacian and spectral clustering

• For two nodes i and j, given the Fiedler vector, v[2],
o vi

[2]vj
[2] > 0, i and j in the same group. Larger vi

[2]vj
[2] means i and j are more communicable.

o vi
[2]vj

[2] < 0, i and j in different groups. Smaller vi
[2]vj

[2] means i and j are less communicable.

• In regular graph case with monotonic f, where the degree is uniform (degi ≡ deg), 
graph Laplacian becomes deg I – A with eigenvalues 𝛍i = deg – λi, and eigenvectors 
x[i] = v[i].
o Dominant eigenvector (k = 1) contains no information as x[1] = e.
o Next dominate term is v[2]v[2]T , which is graph Laplacian clustering. 

• In regular graph with monotonic f, min xT (D – A) x =  min xT (deg I – A) x →            
max xT A x.
o Need xi and xj to be large and have the same sign → nodes that are more connected are farther 

from the origin.
o (vi

[2])2 measures the well-connectedness of node i (same expression as f-centrality).
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Resolvent vs. exponential

• n! is comparable to (N – 1)n – 1 when n ≈ Ne. 

• Exponential: cn = 1/n!
• Resolvent: cn = 1/(N-1)n-1

n

n!
/(N

-1
)n

-1

1/(N – 1)n – 1 > 1/n! 

n ≈ Ne

• Exponential measures 
penalize less on short 
walks (n < Ne), whereas 
resolvent measures 
penalize less on long 
walks (n > Ne)

1/(N – 1)n – 1 < 1/n! 



Resolvent vs. exponential

• The contribution from paths with length ≥ N to the resolvent communicability is 

bounded:

• As ||A||∞ << N, we conclude that the contribution of walks with length O(N) to the 

resolvent communicability is negligible. 



Ring of nodes with a hub
• Consider a periodic ring network. Each node is connected to K nodes clockwise and 

counterclockwise. Introduce a “hub” nodes that connects to H equally separated ring nodes.
• Consider such a network with N = 200, K = 6, and H = 2 ~ 20

N = 18, K = 3, H = 3• Hub removal destroys 
shortcuts → more effect 
on resolvent 
communicablility

• Resolvent centrality is 
more similar to node 
degree (ratio approaches 
to 1 as H approaches 13 
≈ 2K)

Betweenness and centrality of hub node relative to a 
ring node
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Experiment with small scale data

• Data set 1 – interactions (talk, joking, etc.) among15 mine workers in Zambia

• Data set 2 – assistant-level interactions among 40 individuals in a tailor’s shop in 

Zambia. 
Adjacency matrices



Experiment with small scale data

• Resolvent centrality is close to degree, 
and usually locates in the middle of 
degree and exponential centrality.

• The three measures differ more in the 
mine case (smaller, sparser).

• Requires arbitrary tie-breaking if nodes 
have the same degree.

• Resolvent is in the middle of exponential 
and degree, and is more close to degree.

Position (i, j) represents the node is ranked i in 
degree and j in exponential (circle) or resolvent 
(cross) centrality



Experiment with large scale data

• Food web: 81 nodes representing 
marine species.

• Resolvent measure is between the 
degree and exponential measures, 
and is more close to exponential. 

• Ordering of the first 10 nodes in 
centrality ranking (high to low) is 
different in each measure.

• “≡” indicates a tie-breaking

Increase centrality



Experiment with large scale data

• Network of macaque cortical 
connectivity: 95 nodes representing 
regions in brain and edges are physical 
connections

• The three rankings are generally 
consistence. Difference appears at 
lower positions

z



Experiment with large scale data

• Protein-protein interaction network: 2224 
proteins are nodes, each edge denotes 
an physical interaction.

• Note that nodes 111, 607 and 1896 have 
the same degree. This makes degree 
and resolvent equivalent.
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Conclusion

• Resolvent centrality is typically in the middle of degree and exponential centrality. 

Its value is often closer to degree in large networks.

• Resolvent measure has advantages of 
o Real-valued

o Can yield analogous measures of communicability and betweenness

• Build the fundamentals of defining centrality, communicability, and betweenness

using other matrix function


