Network Properties Revealed through Matrix Functions

Qun Su 11-8-2017

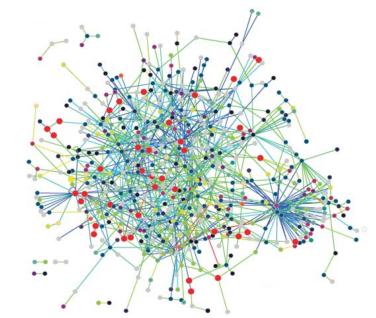
- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

Motivation and background

- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

Motivation

- Analysis and characterization of networks offers valuable guidance in many areas
 - Cell biology: gene-protein connections
 - $_{\odot}$ Brian: interconnection in neurological regions
 - $_{\odot}$ Epidemiology: epidemical contact of people
 - $_{\odot}$ Zoology: social interaction among animals
 - \circ Energy: electricity transport network
 - \circ Telecommunication
 - \circ WWW
 - \circ Movie database: costarring



Protein interaction network of Treponema pallidum

- Networks are typically complex → the paper aim to describe complex networks with some simple quantities
- Network: undirected, unweighted graph with N nodes

Node centrality

- Measuring networks with the concept of centrality was proposed decades ago.
- Most intuitive method: Freeman centrality (Freeman, 1979), or degree

$$\deg_i := \sum_{k=1}^N a_{ik} = (A\mathbf{e})_i$$

- \circ Counts the number of edges connecting to node *i*
- \circ e is a vector with all elements being 1
- A is the adjacency matrix of the network
- Katz centrality (Katz, 1953), an extension of Freeman centrality

$$k_{i} := \sum_{j=1}^{N} \sum_{k=0}^{\infty} \alpha^{k} (A)_{ij}^{k} = \left(\left((I - \alpha A)^{-1} - I \right) \mathbf{e} \right)_{i}$$

- \circ *I* = *N*-dimensional identity matrix
- $\circ \alpha$ is a fixed parameter. Its upper bound is the inverse of A's largest eigenvalue

Node centrality

• Eigenvector centrality (Bonacich, 1987), for weighted networks

$$b_i := \frac{1}{\lambda_1} \sum_{j=1}^N a_{ij} b_j = \left(\frac{1}{\lambda_1} A \mathbf{f}\right)_i$$

- $\circ \lambda_1$ Perron-Frobenius eigenvalue of A
- \circ *f* Perron-Frobenius eigenvector of *A*

Walk vs. path

- A path between node *i* and node *j* (*i* and *j* are distinct) is an ordered list of distinct nodes *i*, k_1 , k_2 , ..., k_{n-1} , *j*, in which successive nodes are connected.
- Walk between node *i* and node *j* is an ordered list of nodes *i*, k_1 , k_2 , ..., k_{n-1} , *j*, in which successive nodes are connected.
 - The start and end of a walk may be the same (i = j)

 \circ Nodes may be revisited (k_1, k_2, \dots, k_{n-1} are not necessarily distinct)

• Lemma 1.1: The quantity $(A^n)_{ij}$ counts the number of different walks $(i \neq j)$ or closed walks (i = j) of length n between nodes *i* and *j*.

- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

Matrix exponential: Centrality

 Degree of node *i* can be alternatively interpreted by number of closed walks of length 2 from *i*

$$(A^2)_{ii} = \sum_{k=1}^N a_{ik} a_{ki} = \deg_i$$

- Consider lemma 1.1, (Aⁿ)_{ii} gives the number of closed walks involving node *i*, which reflects how *i* is connected to the network
- Intuitively, we write the centrality of node *i* as

$$(A^2)_{ii} + (A^3)_{ii} + (A^4)_{ii} + \dots$$

• Note that longer walks are less efficient than shorter walks. Hence, we need to add a weight factor to each term such that longer walks contribute less to centrality

Matrix exponential: Centrality

• Let the weight factor be 1/(n!) with n being the walk length and add an constant bias

Arbitrary constant $I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots + \frac{A^k}{k!} + \dots \Big)_{ii}$

• Can be rewrite to

(I + A)

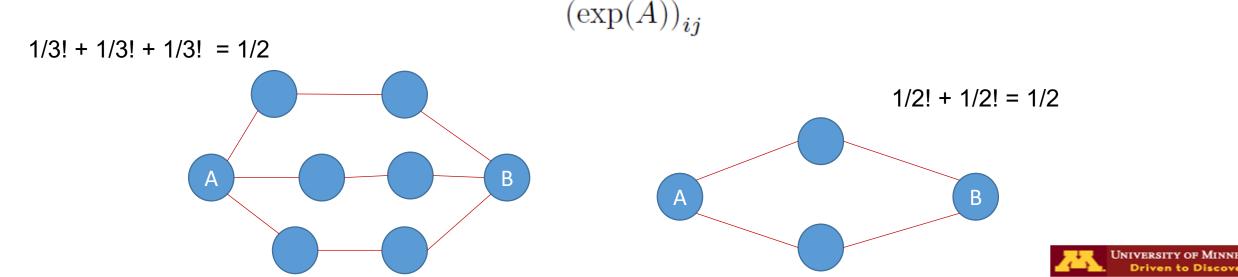
 $(\exp(A))_{ii}$

Matrix exponential: Communicability

- Communicability quantifies the easiness for a piece of information to pass from node *i* to node *j* (*i* and *j* are distinct)
- A reasonable expression for communicability is sum over all walks that connect *i* and *j*.

 $(A^2)_{ij} + (A^3)_{ij} + (A^4)_{ij} + \dots$

 Again, longer walks through *i* and *j* are penalized for not being efficient. If still use 1/(n!) as the weight and (I + A) as bias, we have



Matrix exponential: Betweenness

- Betweenness quantifies the importance of a particular node for information flow within the network. Alternatively, it quantifies the change of overall communicability of the network if a particular node is removed.
- Denote the node to be removed as r, and let E(r) be a matrix whose components are nonzero only in (1) row and column r, AND (2) A has 1 in that position. Then the change in communicability per pair of nodes (other than r) is

$$\frac{1}{(N-1)^2 - (N-1)} \sum \sum_{i \neq j, i \neq r, j \neq r} \frac{(\exp(A)_{ij} - \exp(A - E(r))_{ij})}{\exp(A)_{ij}}$$

 $\circ N \ge 3$

○ Number of terms in the summation is $(N - 1)^2 - (N - 1)$

• Up to now, we developed a methodology of using matrix exponential as a measure of a network in three aspects: centrality, communicability, and betweenness

- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

General rule of forming new network measures

• Assumption: the graph is connected, with *N* nodes.

 \circ There must be at least one walk of length less than *N* between two nodes.

 Generally, to propose a new set of network measures, we write centrality in the form:

$$\sum_{n=1}^{\infty} c_n A^n$$

with $c_n \ge 0$ being the weight to scale the number of walks of length *n*.

• $c_n = 1/(n!)$ is not the only way of scaling.

General rule of forming new network measures

• A complete set of network measures should have the following form:

◦ *f*-centrality: given by $f(A)_{ii}$, or in terms of the spectrum of A, $\sum_{k=1}^{N} f(\lambda_k) x_i^{[k]^2}$. $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_N$ are the eigenvalues of A corresponding to eigenvectors $x^{[1]}$, $x^{[2]}$, ..., $x^{[N]}$.

• *f*-communicability: given by $f(A)_{ij}$ (*i* and *j* are distinct), or $\sum_{k=1}^{N} f(\lambda_k) x_i^{[k]} x_j^{[k]}$

 ${\scriptstyle \odot}$ Betweenness: given by

$$\frac{1}{(N-1)^2 - (N-1)} \sum_{i \neq j, i \neq r, j \neq r} \frac{(f(A)_{ij} - f(A - E(r))_{ij})}{f(A)_{ij}}$$

• From the factorial weight, a new f should

○ Penalize long walks ($c_n \ge 0$ decreases with n)

- $_{\odot}$ Be a convergent series
- $_{\odot}$ Lead to a matrix function

New set of measures: matrix resolvent

• Use $(N - 1)^{n-1}$ as the weight, and $c_0 = N - 1$. After some math, we get

$$f(x) = (N-1)\left(1 - \frac{x}{N-1}\right)^{-\frac{1}{2}}$$

rescale to

$$f(x) = \left(1 - \frac{x}{N-1}\right)^{-1}$$

• Resolvent centrality

$$\sum_{k=1}^{N} \frac{N-1}{N-1-\lambda_k} \mathbf{x}_i^{[k]^2}$$

Resolvent communicability

$$\sum_{k=1}^{N} \frac{N-1}{N-1-\lambda_k} \mathbf{x}_i^{[k]} \mathbf{x}_j^{[k]}$$

Resolvent betweenness

$$\frac{1}{(1)^2 - (N-1)} \sum \sum_{i \neq j, i \neq r, j \neq r} \frac{(f(A)_{ij} - f(A - E(r))_{ij})}{f(A)_{ij}}$$

- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

Relation with graph Laplacian and spectral clustering

 Partition the nodes into two groups, where nodes in one group share more edges whereas nodes across the two groups share less edges.

○ Define $x_i = \frac{1}{2}$ if node *i* is in group A and $x_i = -\frac{1}{2}$ if node *i* is in group B

• Solve for

$$\min_{\mathbf{x}\in\mathbb{R}^N, \|\mathbf{x}\|_2=1, \sum_{i=1}^N \mathbf{x}_i=0} \sum_{i=1}^N \sum_{j=1}^N (\mathbf{x}_i - \mathbf{x}_j)^2 a_{ij} \qquad \text{Number of edges} across the two groups}$$

Set $||x||_2 = 1$ to eliminate trivial solution (x = 0); set $\sum_{i=1}^{N} x_i = 1$ to avoid built-in redundancy \circ Let $D = diag(deg_i)$, and rewrite

$$\min_{\mathbf{x} \in \mathbb{R}^{N}, \|\mathbf{x}\|_{2}=1, \sum_{i=1}^{N} \mathbf{x}_{i}=0} \mathbf{x}^{T} \left(D-A\right) \mathbf{x}$$

• (D - A) is the graph Laplacian. The solution is the eigenvector $(v^{[2]})$ with the second smallest eigenvalue (μ_2) , which is referred as Fiedler vector.

Relation with graph Laplacian and spectral clustering

- For two nodes *i* and *j*, given the Fiedler vector, $v^{[2]}$,
 - $v_i^{[2]}v_j^{[2]} > 0$, i and j in the same group. Larger $v_i^{[2]}v_j^{[2]}$ means i and j are more communicable. • $v_i^{[2]}v_j^{[2]} < 0$, i and j in different groups. Smaller $v_i^{[2]}v_j^{[2]}$ means i and j are less communicable.
- In regular graph case with monotonic *f*, where the degree is uniform ($deg_i \equiv deg$), graph Laplacian becomes deg I A with eigenvalues $\mu_i = deg \lambda_i$, and eigenvectors $x^{[i]} = v^{[i]}$.
 - Dominant eigenvector (k = 1) contains no information as $x^{[1]} = e$.

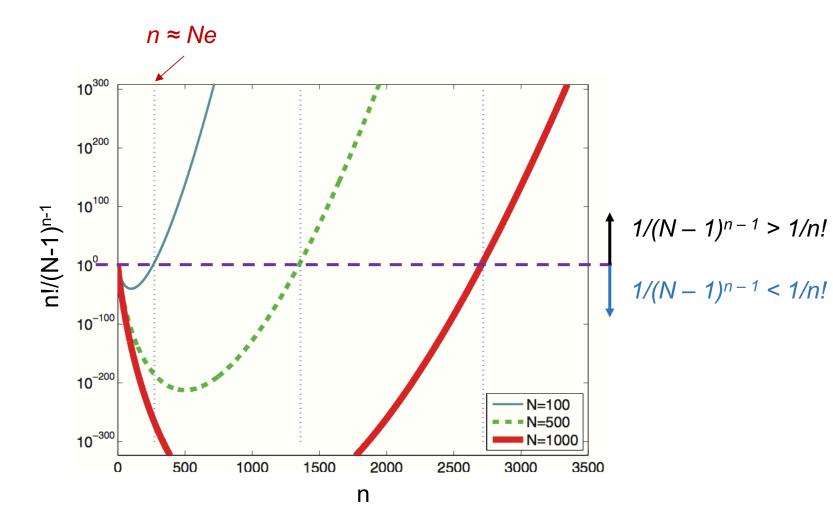
 \circ Next dominate term is $v^{[2]}v^{[2]T}$, which is graph Laplacian clustering.

- In regular graph with monotonic f, min $x^T (D A) x = min x^T (deg I A) x \rightarrow max x^T A x.$
 - Need x_i and x_j to be large and have the same sign → nodes that are more connected are farther from the origin.
 - $\circ (v_i^{[2]})^2$ measures the well-connectedness of node *i* (same expression as *f*-centrality).

- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

Resolvent vs. exponential

• *n*! is comparable to $(N - 1)^{n-1}$ when $n \approx Ne$.



Exponential measures penalize less on short walks (n < Ne), whereas resolvent measures penalize less on long walks (n > Ne)

• Exponential: $c_n = 1/n!$

• Resolvent: $c_n = 1/(N-1)^{n-1}$

Resolvent vs. exponential

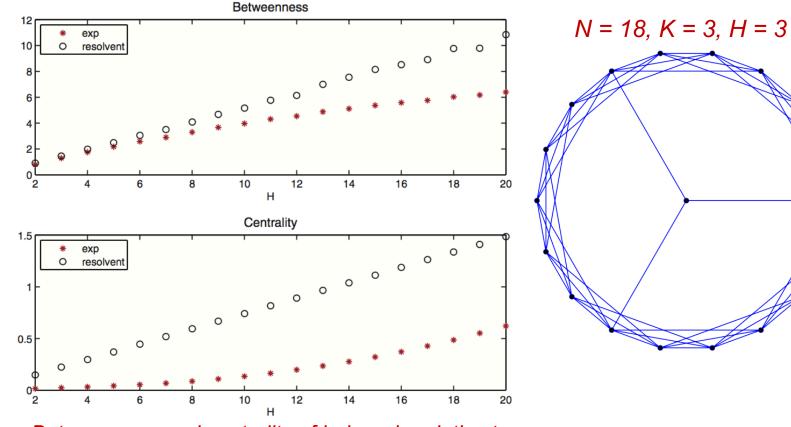
 The contribution from paths with length ≥ N to the resolvent communicability is bounded:

$$\begin{split} \sum_{n=N}^{\infty} \left(\frac{A^n}{(N-1)^{n-1}} \right)_{ij} &\leq \left\| \sum_{n=N}^{\infty} \frac{A^n}{(N-1)^{n-1}} \right\|_{\infty} \\ &\leq \sum_{n=N}^{\infty} \frac{\|A^n\|_{\infty}}{(N-1)^{n-1}} \\ &\leq \sum_{n=N}^{\infty} \frac{\|A\|_{\infty}^n}{(N-1)^{n-1}} \\ &\leq \frac{(N-1)^2}{N-1-\|A\|_{\infty}} \left(\frac{\|A\|_{\infty}}{N-1} \right)^N \end{split}$$

• As $||A||_{\infty} << N$, we conclude that the contribution of walks with length O(N) to the resolvent communicability is negligible.

Ring of nodes with a hub

- Consider a periodic ring network. Each node is connected to *K* nodes clockwise and counterclockwise. Introduce a "hub" nodes that connects to *H* equally separated ring nodes.
- Consider such a network with N = 200, K = 6, and $H = 2 \sim 20$
- Hub removal destroys shortcuts → more effect on resolvent communicablility
- Resolvent centrality is more similar to node degree (ratio approaches to 1 as H approaches 13
 ≈ 2K)

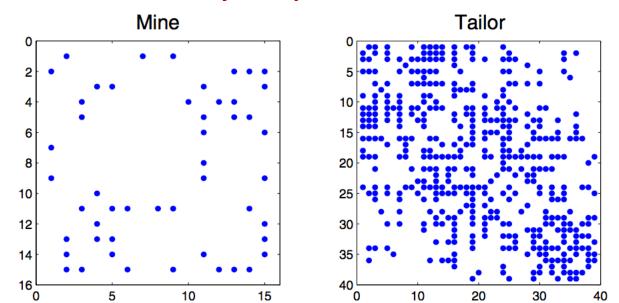


Betweenness and centrality of hub node relative to a ring node

- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

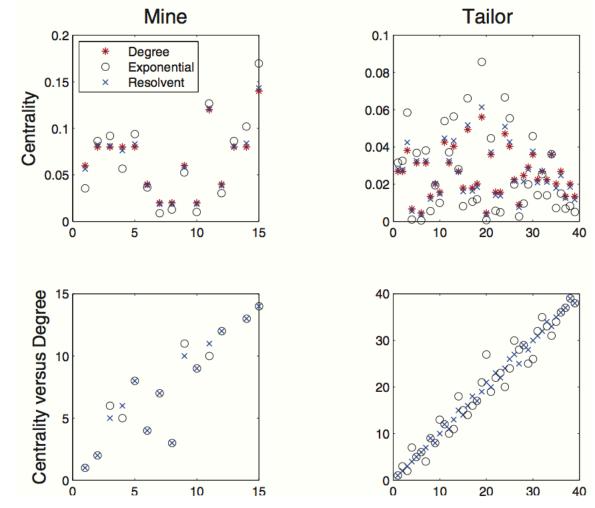
Experiment with small scale data

- Data set 1 interactions (talk, joking, etc.) among15 mine workers in Zambia
- Data set 2 assistant-level interactions among 40 individuals in a tailor's shop in Zambia.



Experiment with small scale data

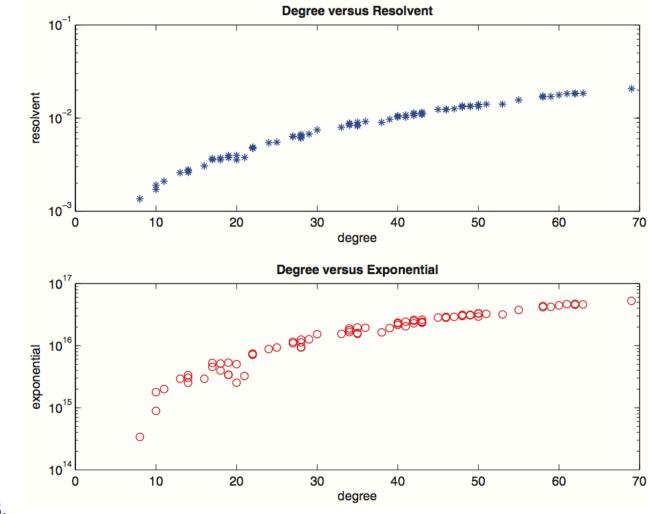
- Resolvent centrality is close to degree, and usually locates in the middle of degree and exponential centrality.
- The three measures differ more in the mine case (smaller, sparser).
- Requires arbitrary tie-breaking if nodes have the same degree.
- Resolvent is in the middle of exponential and degree, and is more close to degree.



Position (i, j) represents the node is ranked i in degree and j in exponential (circle) or resolvent (cross) centrality

Experiment with large scale data

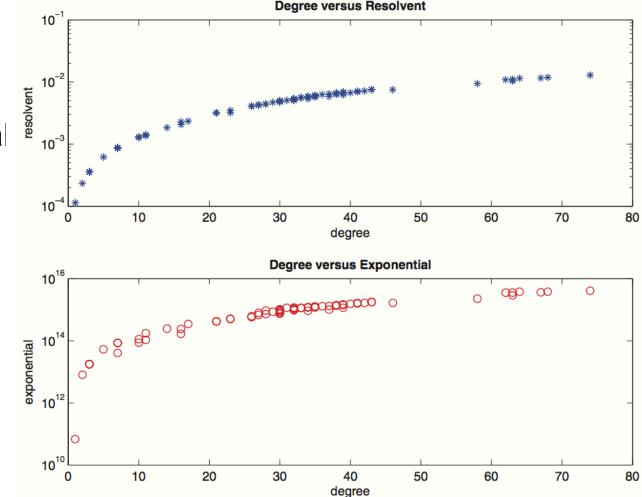
- Food web: 81 nodes representing marine species.
- Resolvent measure is between the degree and exponential measures, and is more close to exponential.
- Ordering of the first 10 nodes in centrality ranking (high to low) is different in each measure.
- "≡" indicates a tie-breaking



Increase centrality

Experiment with large scale data

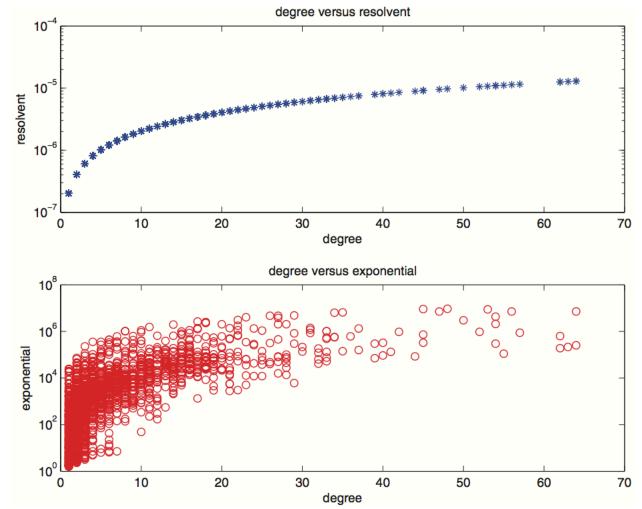
- Network of macaque cortical connectivity: 95 nodes representing regions in brain and edges are physical connections
- The three rankings are generally consistence. Difference appears at lower positions



 $\begin{array}{l} degree: \ \left(15 < 94 \right) < 65 < 58 < 31 \equiv 39 < 38 < 59 < 93 < 68, \\ resolvent: \ \left(13 < 6 \right) < 65 < 39 < 58 < 31 < 38 < 59 < 93 < 68, \\ 11 < 12 < 65 < 39 < 58 < 31 < 38 < 59 < 93 < 68, \\ 11 < 59 < 38 < 93 < 68. \end{array}$

Experiment with large scale data

- Protein-protein interaction network: 2224 proteins are nodes, each edge denotes an physical interaction.
- Note that nodes 111, 607 and 1896 have the same degree. This makes degree and resolvent equivalent.



 $\begin{array}{l} \textit{degree:} \ \ 607 \equiv 1896 < 489 < 473 < 138 < 200 \equiv 739 < 1338 < 292 \equiv 535, \\ \textit{resolvent:} \ \ 111 < 607 < 489 < 473 < 138 < 739 < 200 < 1338 < 535 < 292, \\ \textit{exponential:} \ \ 1170 < 122 < 129 < 156 < 117 < 473 < 292 < 242 < 126 < 427. \end{array}$

- Motivation and background
- Measuring network with matrix exponential
- New set of measures: matrix resolvent
- Relation with graph Laplacian and spectral clustering
- Resolvent vs. exponential
- Experiment
- Conclusion

Conclusion

- Resolvent centrality is typically in the middle of degree and exponential centrality.
 Its value is often closer to degree in large networks.
- Resolvent measure has advantages of

 \circ Real-valued

- $_{\odot}$ Can yield analogous measures of communicability and betweenness
- Build the fundamentals of defining centrality, communicability, and betweenness using other matrix function

