Tutorial on Convolutional Neural Networks

CAMERON FABBRI

Focusing on Two Papers

- Gradient-Based Learning Applied to Document Recognition [1]
- ImageNet Classification with Deep Convolutional Neural Networks [11]

Outline

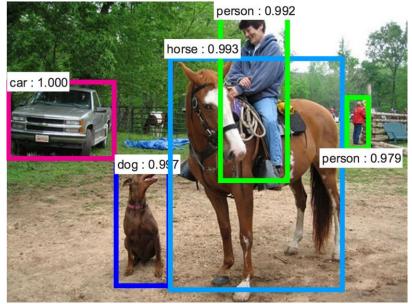
- Motivation
- Neuron Recap
- Generative vs Discriminative Models
- Convolutional Neural Network Components
 - Convolution
 - Pooling
 - Fully Connected Layers
 - Dropout
- Alexnet
- Generative Models
- Conclusion

Motivation

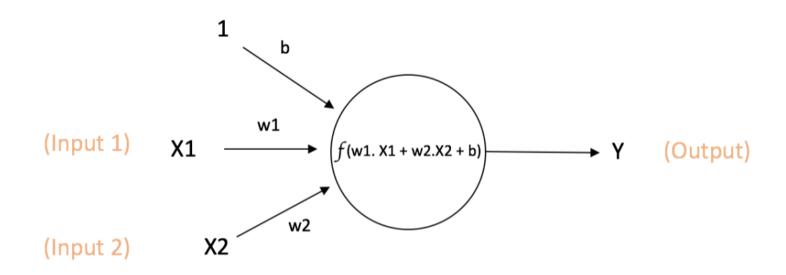
- Most real world problems are nonlinear in nature
- Reliable feature representations
- Hand crafted features require extreme domain knowledge and are expensive to acquire
- Neural Networks learn feature representation from the data directly

Motivation and Inspiring Results

a woman is playing tennis on a tennis court



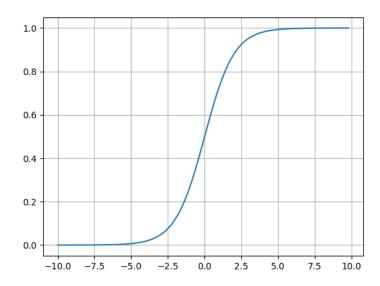
Neuron Recap



Output of neuron = Y= f(w1. X1 + w2. X2 + b)

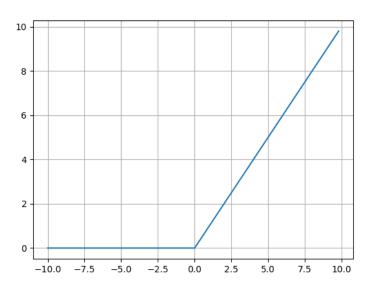
Activation Function

Sigmoid



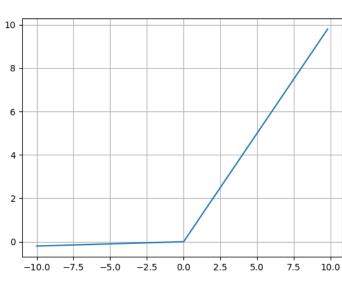
$$f(x) = \frac{1}{1 + e^{-x}}$$

ReLU



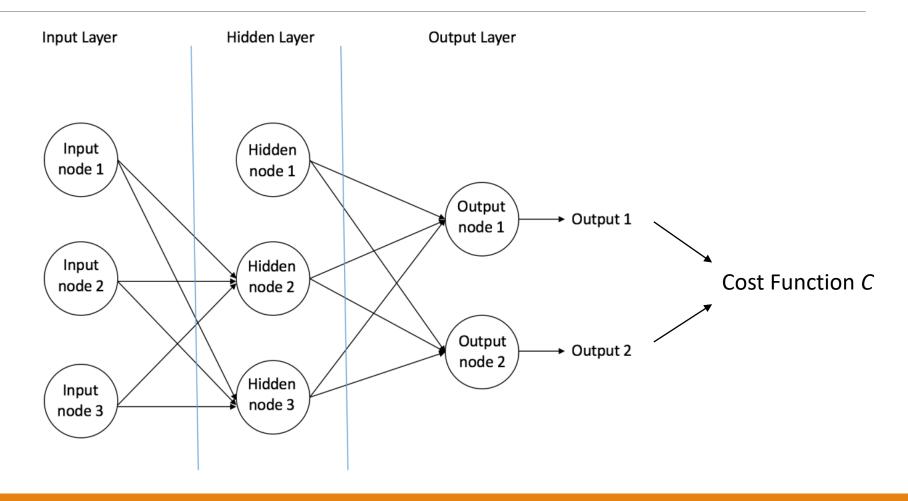
$$f(x) = \max(0, x)$$

Leaky ReLU



$$f(x) = \max(\alpha x, x)$$

Feedforward Neural Network



Backpropagation

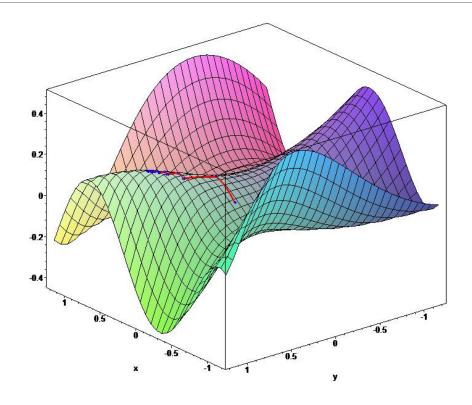
Used in conjunction with gradient descent

$$z^{L} = w^{L}a^{L-1} + b^{L}$$

$$a^{L} = \sigma(z^{L})$$

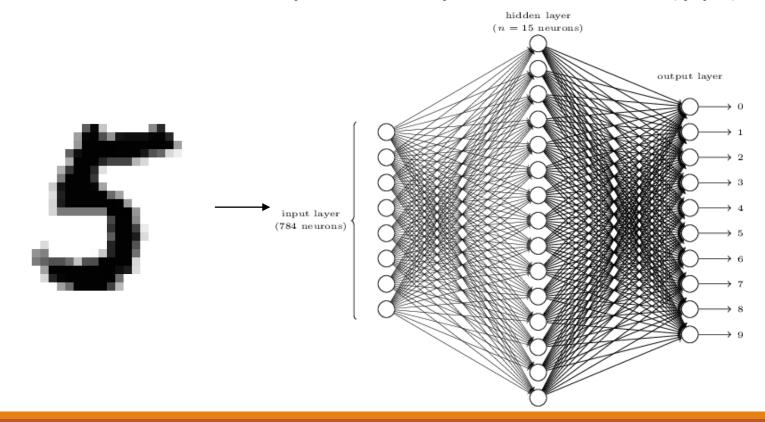
$$C = (a^{L} - y)^{2}$$

$$\frac{\partial C}{\partial w^L} = \frac{\partial z^L}{\partial w^L} * \frac{\partial a^L}{\partial z^L} * \frac{\partial C}{\partial a^L}$$



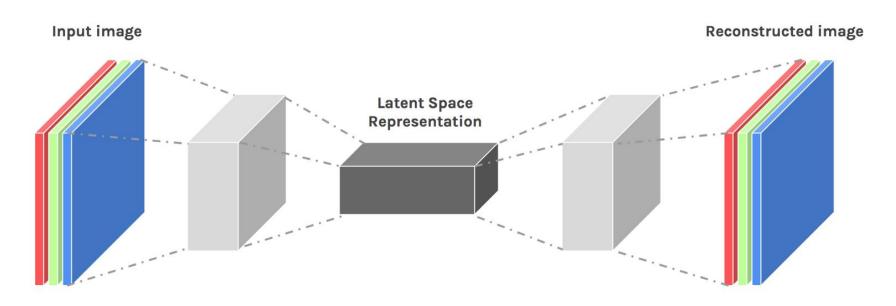
Discriminative Models

Learn a conditional probability distribution P(y|x)



Generative Models

- A form of unsupervised learning
 - Autoencoders
 - Generative Adversarial Networks



Convolution

• Primary use is to extract features from an image.

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

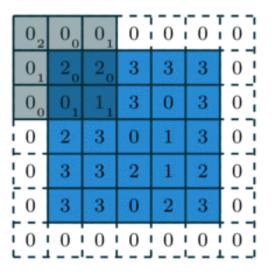
4	

Convolved Feature

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Convolution Parameters

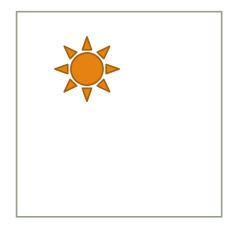
- Kernel Size
- Stride
- Depth
- Padding

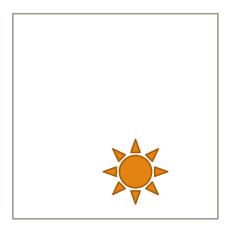


1	6	5
7	10	9
7	10	8

Convolutional Neural Networks (CNNs)

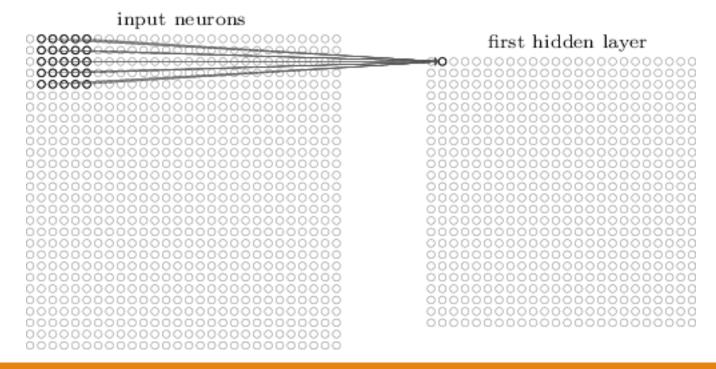
- Combine three main ideas
 - Local Receptive Fields
 - Shared Weights
 - Spatial sub-sampling





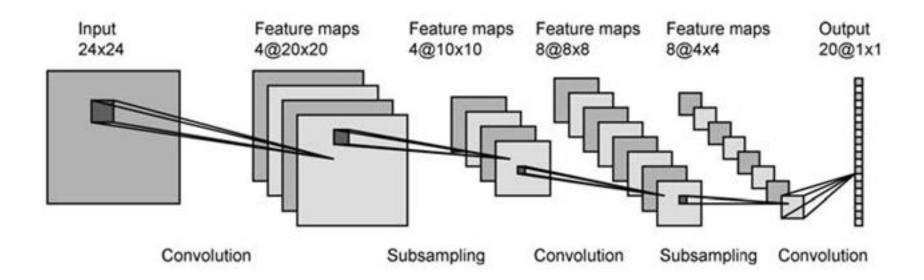
Local Receptive Fields

 Allow neurons to extract local visual features, which are used in subsequent layers to detect higher level features.



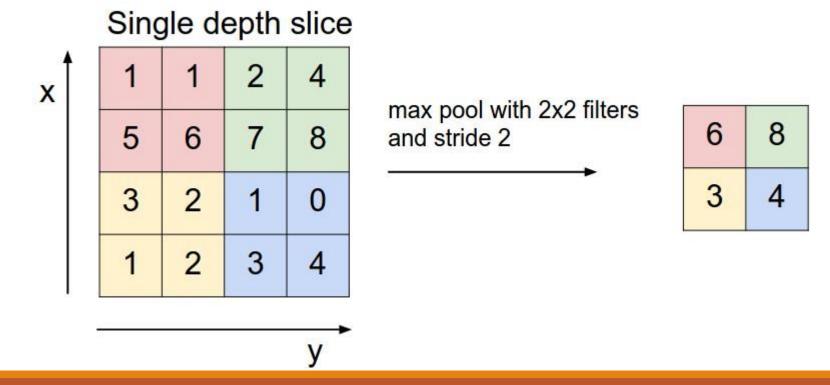
LeNet-5

• The set of output units is called a feature map



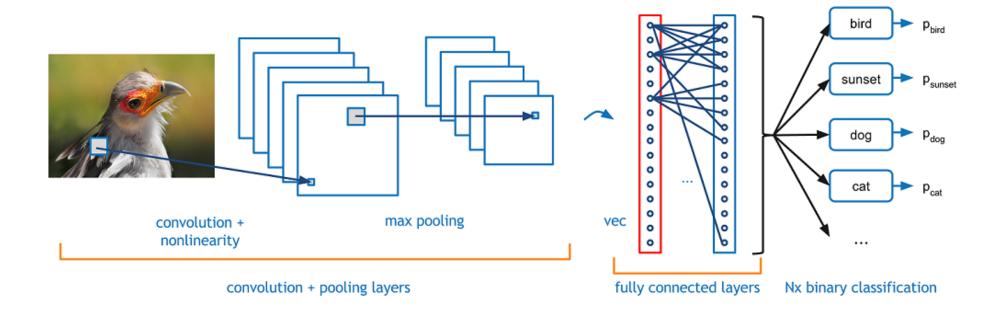
Pooling Layers

• Downsample the input



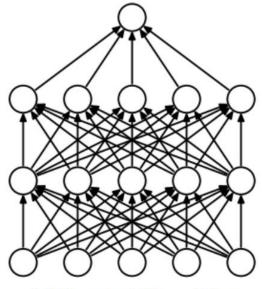
Fully Connected Layers

- Flattens the feature map
- Outputs class labels, numbers, etc.

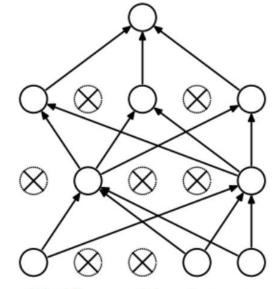


Dropout

- Prevents overfitting
- Randomly sets activations to zero



(a) Standard Neural Net



(b) After applying dropout.

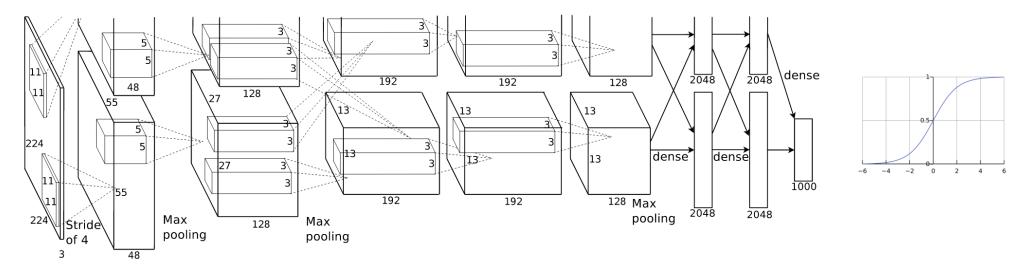
Alexnet

Achieved incredible results on the ImageNet dataset

• Top-1 error: 37.5%

• Top-5 error: 17.0%

Kicked off the deep learning craze



Alexnet Training Details

- Stochastic Gradient Descent
- Batch size of 128
- Momentum
- Weight decay of 0.0005
- Learning rate of 0.01 and reduced throughout training

$$v_{i+1} := 0.9 \cdot v_i - 0.0005 \cdot \epsilon \cdot w_i - \epsilon \cdot \left\langle \frac{\partial L}{\partial w} \big|_{w_i} \right\rangle_{D_i}$$

$$w_{i+1} := w_i + v_{i+1}$$

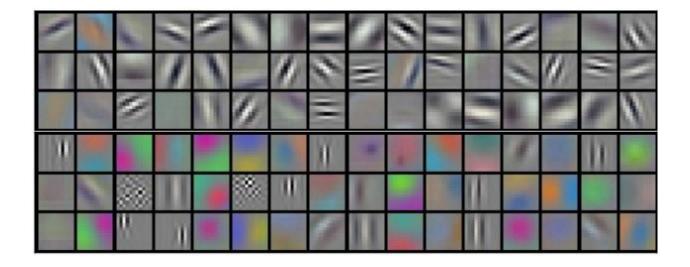
Data Augmentation

- Reduces overfitting
- Provides more data samples
- How?
 - Mirror/flip image
 - Contrast/brightness change

6

Visualization

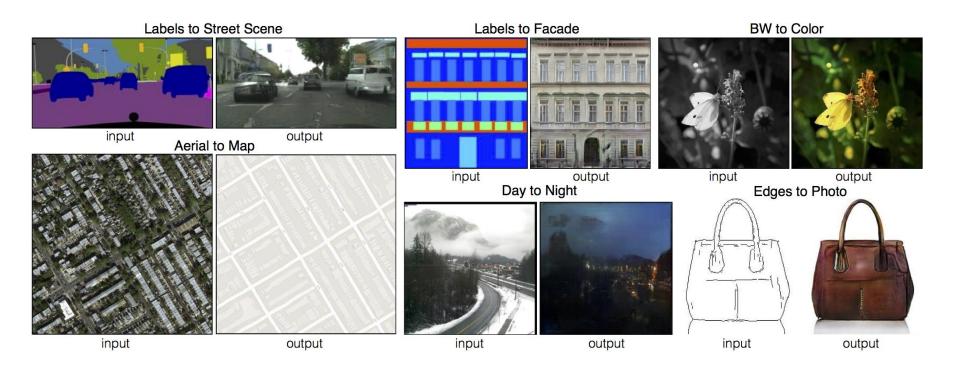
• Filters from the first convolutional layer



Generative Models

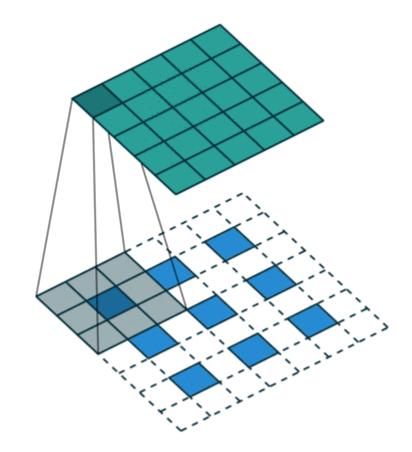
Image to Image Translation

How can we output an image?



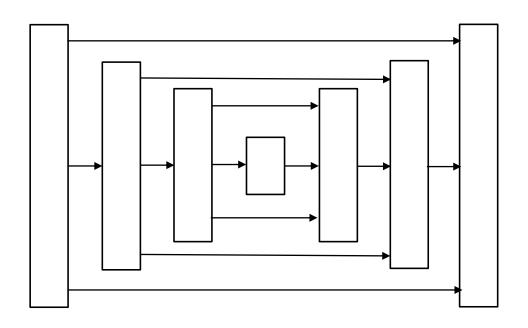
Upsampling

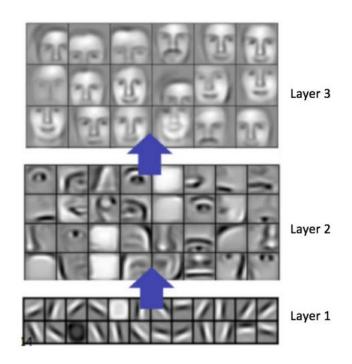
- How do we upsample?
 - Transpose (strided) convolution
 - Upconvolution



U-Net

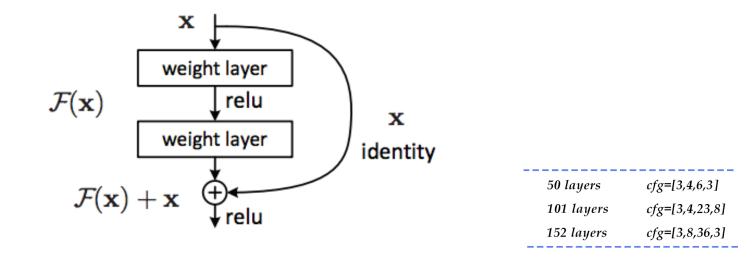
• Skip connections for preserving local structure.

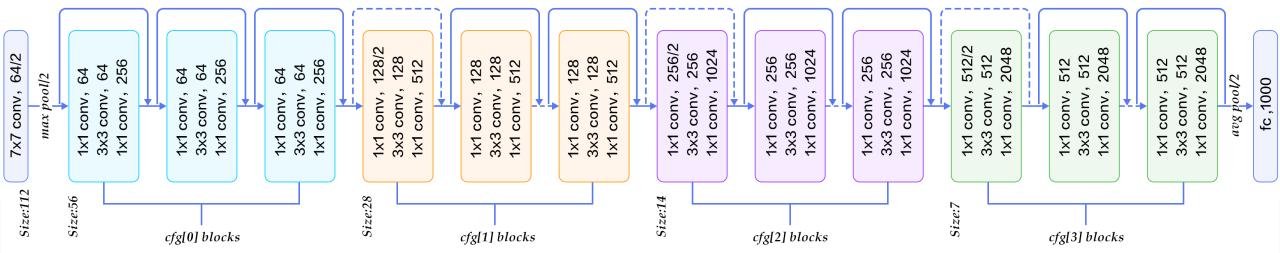




Popular Architectures

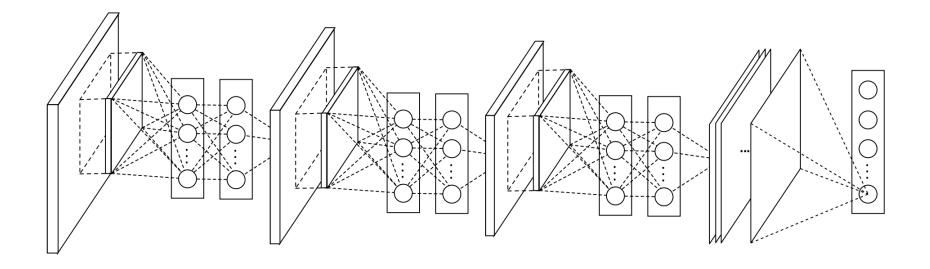
- Alexnet
- VGG Net
- Inception
- Resnet





Interesting Architectures

Network in Network



Deep Learning in Practice

PYTORCH

Caffe

theano

Lasagne

Conclusion

- Feedforward Networks
- Convolutional Neural Networks
- Discriminative Models
 - Alexnet
- Generative Models
- Popular Architectures

Thank You

References

- [1]: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
- [2]: https://arxiv.org/pdf/1506.01497v3.pdf
- [3]: https://arxiv.org/pdf/1703.10593.pdf
- [5]: https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- [6]: http://cs231n.github.io/convolutional-networks/
- [7]: https://github.com/karpathy/neuraltalk2
- [8]: Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.
- [9]: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv preprint arXiv:1611.07004 (2016).
- [10]: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.
- [11]: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. APA

References

- [12]: Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015). APA
- [13]: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. APA
- [14]: Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).
- [15]: Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful image colorization." European Conference on Computer Vision. Springer International Publishing, 2016.
- [16]: Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint arXiv:1703.10593 (2017).
- [17]: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
- [18]: https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
- [19]: https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
- [20]: https://pgaleone.eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/
- [21]: https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
- [22]: http://neuralnetworksanddeeplearning.com/chap1.html
- [23]: https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
- [24]: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html