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pLSI

• Each document is a mixture of topics.

• Each topic is a mixture of words.

• Must learn each document mixture individually.
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LDA

• More general than pLSI

• Each document is represented as a mixture of topics

• Each document is generated from a process i.i.d.

• Each word is generated i.i.d. depending on the choice of topic and choice
of word within each topic.
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LDA Story
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Latent Dirichlet Alloc. - Plate Diagram
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Dirichlet Distribution

• Generalization of Beta Distribution, when there are more than 2 parameters.

• Dir(α) for α = (α1, . . . , αK) > 0 :

ρ(x1, . . . , xK) =
1

B(α)
xα1−1

1 · xα2−1

2 · · · xαK−1

K

where 0 < xi < 1, x1 + · · · xK = 1.

• B(α) =

∏

Γ(αi)

Γ(
∑

αi)
.

• Gives variety of distributions over simplex 0 < xi < 1, x1 + · · · xK = 1.
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Dirichlet Distribution

probability density
functions of a few
Dirichlet distributions
over a 2-simplex, for
the following alpha
vectors (clockwise,
starting from the
upper left corner):
(1.3, 1.3, 1.3), (3,3,3),
(7,7,7), (2,6,11),
(14, 9, 5), (6,2,6).

https://upload.wikimedia.org/wikipedia/commons/2/2b/Dirichlet-3d
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Dirichlet Distribution

Show how the log of the density function changes when K = 3 as we change
the vector α from (0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual
αi’s equal.

https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/

LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif/

250px-LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif
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Multinomial Distribution

• Carry out n i.i.d trials, each one with k possible outcomes.

Record counts: how many times each outcome occurs, ignoring the order.

• Generalization of binomial distribution (n > 1, k = 1)

• Example: n coin tosses: (k = 2). 6 sided die (k = 6).

• 1 sample from this distribution y = (y1, . . . , yk)

where yi ∈ {1, . . . , n}, y1 + · · ·+ yk = n.

• Multi(p): Probability of a specific observation y = (y1, . . . , yk)

parametrized by p = (p1, . . . , pk), 0 ≤ pi ≤ 1,
∑

pi = 1:

P (y) = n!
y1! · · · yk!

py11 · py22 · · · pykk
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Conjugate

https://en.wikipedia.org/wiki/Conjugate_prior

The form of the conjugate prior can generally be determined by inspection
of the probability density or probability mass function of a distribution.
For example, consider a random variable which consists of the number of
successes s in n Bernoulli trials with unknown probability of success q
in [0,1]. This random variable will follow the binomial distribution, with a
probability mass function of the form

P (s) =

(

n

s

)

qs(1− q)n−s

The usual conjugate prior is the beta distribution with parameters (α, β):

ρ(q) =
qα−1(1− q)β−1

B(α, β)

where α and β are chosen to reflect any existing belief or information (
α = 1 and β = 1 would give a uniform distribution) and B(α, β) is the
Beta function acting as a normalising constant.
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Hyperparameters

In this context, α and β are called hyperparameters (parameters of the
prior), to distinguish them from parameters of the underlying model (here
q). It is a typical characteristic of conjugate priors that the dimensionality
of the hyperparameters is one greater than that of the parameters of
the original distribution. If all parameters are scalar values, then this
means that there will be one more hyperparameter than parameter; but
this also applies to vector-valued and matrix-valued parameters. (See the
general article on the exponential family, and consider also the Wishart
distribution, conjugate prior of the covariance matrix of a multivariate
normal distribution, for an example where a large dimensionality is involved.)
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Bayes Theorem

p(a|b)p(b) = p(a&b) = p(b|a)p(a)

p(a|b) =
p(b|a)p(a)

p(b)
=

[Posterior probability of param a after observing b ] =

=
[Prob observation b given param a ] · [Prior prob of a ]

normalized over all possible values of b
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Update using observation

If we then sample this random variable and get s successes and f failures,
we have

P (s, f | q = x) =

(

s+ f

s

)

xs(1− x)f , ρ(x) =
xα−1(1− x)β−1

B(α, β)
,

ρ(q = x | s, f) =
P (s, f | x)P (x)

∫

P (s, f | x)P (x)dx

=

(

s+f

s

)

xs+α−1(1− x)f+β−1/B(α, β)
∫

1

y=0

((

s+f

s

)

ys+α−1(1− y)f+β−1/B(α, β)
)

dy

=
xs+α−1(1− x)f+β−1

B(s+ α, f + β)
,

which is another Beta distribution with parameters (α + s, β + f). This
posterior distribution could then be used as the prior for more samples,
with the hyperparameters simply adding each extra piece of information
as it comes.
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Simpler Models
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