
Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts

Paper by Santos and Gatti
Presented by Mitch Kinney

University of Minnesota

November 20, 2017

Plain English: CharSCNN

The authors call their network the Sentence Convolutional Neural
Network (SCNN) and refer to it as CharSCNN.

Goal of the CharSCNN is to extract sentiment from short sentences
such as tweets.

Uses both word embeddings and character embeddings.

Plain English: CharSCNN

Method

Use a word embedding matrix where columns are a vector
representation of each word in the vocabulary.

Use/train a character embedding matrix where columns are a
vector representation of each character in the vocabulary.

Combine knowledge of words and characters in the sentence
to create a vector representation of the sentence.

Within the CNN use trained weight matrices and bias vectors
to get an estimate of the sentiment of the sentence.

Mathematical Notation: CharSCNN

Word representations

Define V wrd to be the vocabulary of words and |V wrd | to be
its cardinality.

Define the word embedding matrix W wrd ∈ Rdwrd×|Vwrd |

Where dwrd is a user supplied hyperparemeter

For simplicity the authors define a single word’s embedding vector
as rwrd = W wrdvw where vw is a one-hot column vector

Tweet Example: CharSCNN

This tweet contains N words

Represented as [rwrd1 , ..., rwrdN]

Recall each rwrd vector is of length dwrd

Mathematical Notation: CharSCNN

Character representations

Define V chr and dchr similar to word embedding.

Also have a character embedding matrix W chr ∈ Rdchr×|V chr |

And get r chr = W chrv c in the same way.

For a word wrd of length M characters in our sentence we have the
representation

wrd = [r chr1 , ..., r chrM]

Mathematical Notation: CharSCNN

Convolutional layer

Based on a user defined window size of kchr create a subset of
the character embedding vector around r chrm and call it zm

zm = (r chr
m−(kchr−1

2
)
, ..., r chrm , ..., r chr

m+(k
chr−1
2

)
)T , zm ∈ Rdchr ·kchr×1

The vector zm is fed into the convolutional neural network

Weight matrix W 0 ∈ Rcl0u×dchr ·kchr
and bias vector b0 ∈ Rcl0u

cl0u is the user inputted number of convolutional units

For each m in 1,..,M transform zm by doing W 0zm + b0

The output vector rwch ∈ Rcl0u is defined as

rwchj = arg max
m

[W 0zm + b0]j , j = 1, ..., cl0u

Mathematical Notation: CharSCNN

Mathematical Notation: CharSCNN

Sentence Embedding

Define a sentence of length N as [u1, ..., uN]

Combine word and character embeddings for each word and
call it un = (rwrdn , rwchn)T

Use the same convolutional neural network approach as with
character embeddings

With user defined window size kwrd , for n in 1,...,N create

zn = (u
n−(kwrd−1

2)
, ..., un, ..., un+(kwrd−1

2)
)T

zn ∈ R(dwrd+cl0u)·k
wrd×1

Mathematical Notation: CharSCNN

Sentence Embedding

Then create sentence embedding vector r sent ∈ Rcl1u

r sentj = arg maxn[W 1zn + b1]j

Get an estimate s of the sentiment score

s = W 3 · h(W 2r sent + b2) + b3

where h(·) is the inverse tangent function

Tweet Example: CharSCNN

Examples of sentence features extraction

Parameters supplied and trained: CharSCNN

Parameters that need to be user specified or trained by the model

User specified

Vocabularies V wrd , V chr

window sizes kchr , kwrd

convolutional units cl0u , cl
1
u

Trained

Character embedding matrix W chr

Weight matrices W 0, W 1, W 2, W 3

bias vectors b0, b1, b2, b3

Training the model: CharSCNN

Let θ be the trainable parameter set, x a short sentence and Y the
set of sentiment tags. Using a soft max for a sentiment tag y ∈ Y

p(y |x , θ) =
exp(sθ,y (x))∑
i∈Y exp(sθ,i (x))

⇒ log p(y |x , θ) = sθ,y (x)− log(
∑
i∈Y

exp(sθ,i (x)))

Then use the set of training sentences and tags D with stochastic
gradient descent to find

θ̂ = arg min
θ

∑
(x ,y)∈D

−log p(y |x , θ)

Stochastic gradient descent: Review

Stochastic gradient descent is an iterative algorithm for
minimizing an objective function with a summand.

Akin to steepest descent where for an objective function Q(w)
and step size/ learning rate η we solve

ŵ = w0 − η · ∇wQ(w0)

Stochastic gradient descent: Review

Simple example from Wikipedia: minimizing least squares

Q(w) =
n∑

i=1

(w1 + w2xi − yi)
2

Then for a learning rate η our step would be

wnew
1 = wold

1 − η · 1

n

n∑
i=1

(2(wold
1 + wold

2 xi − yi))

wnew
2 = wold

2 − η · 1

n

n∑
i=1

(2xi (w
new
1 + wold

2 xi − yi))

Stochastic gradient descent: Review

For our CNN I’ll define the loss function for a certain training
sentence and sentiment tag (x , y) as `(θ) = −log p(y |x , θ).

Then I need to find the derivative with respect to one of my
parameters, W 2 for instance.

Use the chain rule to get down to the layer in the network

Stochastic gradient descent: Review

Recall our loss function is...

`(θ) = −log p(y |x , θ)

= −sθ,y (x) + log(
∑
i∈Y

exp(sθ,i (x)))

And the sentiment is computed by...

sθ,y (r sentx) = W 3 · h(W 2r sentx + b2) + b3

Stochastic gradient descent: Review

Starting with top layer...

d `(θ)

d W 2
=

d `(θ)

d sθ,y (x)
·
d sθ,y (x)

d W 2

=
−sθ,y (x) + log(

∑
i∈Y exp(sθ,i (x)))

d sθ,y (x)
· W

3h(W 2r sentx + b2) + b3

d W 2

= (−1 +
exp(sθ,y (x))∑
i∈Y exp(sθ,i (x))

) · (diag(W 3)(1hlu − h2(W 2r sentx + b2))

(r sentx)T)

Note that

W 2 ∈ Rhlu×cl1u

W 3 ∈ R1×hlu

r sentx ∈ Rcl1u

What makes CharSCNN novel

The authors claim that the novelty of their model is the

Inclusion of two convolutional layers which allows for
sentences and words of any size

Feed forward approach rather than recurrent

Related Work: Recurrant Neural Tensor Network

The authors use a tree based method to do a bottom up sentiment
analysis of short sentences

First build an-almost binary tree with words as leaves

Then assign word embeddings and filter up the tree to classify
the entire sentence

Must train the weight matrix connecting children to parents
and the word embedding matrix

Related Work: Recurrant Neural Tensor Network

”This movie doesn’t care about cleverness, wit or any other kind of
intelligent humor”

Data Overview

SSTb (Stanford Sentiment Treebank corpus)

11,855 movie reviews.

Manually annotated by three judges on true sentiment score.

STS (Stanford Twitter Sentiment corpus)

1.6 million tweets gathered from searching ”:)” and ”:(”.

Automatically labeled positive or negative based on whether a
happy or sad face is attached to the tweet.

Authors used about 7% of the data in their experiment to
keep run-time low.

Results: Pretrained W wrd

To get the word embeddings matrix W wrd the authors used
word2vec

word2vec is a neural network approach to create vector
representations of words.

These vector representations are able to capture relationships
between words.

Method proposed by a team at Google Deepmind.

Results: STb corpus

Authors used two models: SCNN and CharSCNN

SCNN only uses word embeddings. un = rwrdn

CharSCNN uses both word embeddings and character
embeddings. un = (rwrdn , rwch)

Authors also trained the CNN with and without phrases

STb contains full sentences and parts of the full sentences
called phrases

Authors wanted to know if including the phrases helped
training

In total comparing four methods to previous approaches

Results: STb corpus

Movie reviews are either very negative, negative, neutral, positive
and very positive

Model Phrases Fine-Grained Positive/Negative

CharSCNN yes 48.3 85.7
SCNN yes 48.3 85.5
CharSCNN no 43.5 82.3
SCNN no 43.5 82.0

RNTN yes 45.7 85.4

Results: STS corpus

The authors then compared their model for sentiment analysis
using the twitter data to other approaches. I’ve shown the best
one attributed to Speriosu et al. 2011.

Model Accuracy

CharSCNN 86.4
SCNN 85.2

LProp 84.7

Conclusion

In this presentation...

Overview of CharSCNN network

Review of stochastic gradient descent

Results showing (at the time) state of the art performance

Thank you!

