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Introduction

Convolutional neural networks (CNNs) offer an efficient architecture
to extract highly meaningful statistical patterns in large-scale and
high-dimensional datasets.

In this work, we are interested in generalizing convolutional neural
networks (CNNs) from low-dimensional regular grids to
high-dimensional irregular domains

Low-dimensional: image, video, speech
High-dimensional: User data on social networks, gene data on
biological regulatory networks, log data on telecommunication
networks, text documents on word embeddings
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Introduction

Data lying on irregular or non-Euclidean domains that can be
structured with graphs.

Graphs can encode complex geometric structures and can be studied
with strong mathematical tools such as spectral graph theory.

A generalization of CNNs to graphs is not straightforward as the
convolution and pooling operators are only defined for regular grids.

The major bottleneck of generalizing CNNs to graphs, and one of the
primary goals of this work, is the definition of localized graph filters
which are efficient to evaluate and learn.
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Architecture of a CNN on graphs
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Proposed technique

Generalizing CNNs to graphs requires three fundamental steps:

The design of localized convolutional filters on graphs

A graph coarsening procedure that groups together similar vertices

A graph pooling operation that trades spatial resolution for higher
filter resolution.

Yuting Sun Monday 27th November, 2017 6 / 26



Learning Fast Localized Spectral Filters

There are two strategies to define convolutional filters.

spatial approach

A spatial approaches provides filter localization via the finite size of the
kernel.
Although graph convolution in the spatial domain is conceivable, it
faces the challenge of matching local neighborhoods.
There is no unique mathematical definition of translation on graphs
from a spatial perspective.

spectral approach

A spectral approach provides a well-defined localization operator on
graphs via convolutions with a Kronecker delta implemented in the
spectral domain.
A filter defined in the spectral domain is not naturally localized and
translations are costly due to the O(n2) multiplication with graph
Fourier basis.
Both limitations can be overcome with a special choice of filter
parametrization.
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Graph Fourier Transform

Undirected and connected graphs G = (V ,E ,W ), where V is a finite
set of |V | = n vertices, E is a set of edges and W ∈ Rn×n is a
weighted adjacency matrix encoding the connection weight between
two vertices.

A signal x : V → R defined on the nodes of the graph may be
regarded as a vector x ∈ Rn where xi is the value of x at the i th node.

graph Laplacian:

combinatorial definition: L = D −W ∈ Rn×n where D ∈ Rn×n is the
diagonal degree matrix with Dii =

∑
j Wij

normalized definition: L = In − D− 1
2WD− 1

2 where In is the identity
matrix.
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Graph Fourier Transform

As L is a real symmetric positive semidefinite matrix, it has a
complete set of orthonormal eigenvectors {ul}n−1

l=0 ∈ Rn, known as the
graph Fourier modes, and their associated ordered real nonnegative
eigenvalues {λl}n−1

l=0 , identified as the frequencies of the graph.

The Laplacian is diagonalized by the Fourier basis
U = [u0, . . . , un−1] ∈ Rn×n such that L = UΛUT where
Λ = diag([λ0, . . . λn−1]) ∈ Rn×n.

The graph Fourier transform of a signal x ∈ Rn is then defined as
x̂ = UT x ∈ Rn, and its inverse as x = Ux̂ .
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Spectral filtering of graph signals

The convolution operator on graph *ģ is defined in the Fourier
domain such that x *ģ y = U((UTX )� (UT y)), where � is the
element-wise Hadamard product.

A signal x is filtered by gθ as

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UT x (1)

A non-parameter filter is defined as

gθ(Λ) = diag(θ) (2)

where the parameter θ ∈ Rn is vector of Fourier coefficients
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Polynomial parametrization for localized filters

Two limitations with non-parametric filters

These issue can be overcome with a polynomial filter

gθ(Λ) =
K−1∑
k=0

θkΛk (3)

where the parameter θ ∈ RK is vector of polynomial coefficients.

The value at vertex j of the filter gθ centered at vertex i is given by
(gθ(L)δi )j = (gθ(L))i ,j =

∑
k θk(Lk)i ,j where the kernel is localized

via a convolution with a Kronecker delta function δi ∈ Rn.

Spectral filters represented by Kth order polynomials of the Laplacian
are exactly K-localized.

Then learning complexity is O(K ), the support size of the filter (same
as classical CNNs).
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Recursive formulation for fast filtering

Learning localized filters with K parameters, the cost to filter a signal
x as y = Ugθ(Λ)UT x is O(n2) operations because of the
multiplication with the Fourier basis U.

Parametrize gθ(L) as a polynomial function that can be computed
recursively from L, as K multiplications by a sparse L costs
O(K |E |)� O(n2).

A filter can be parametrized as the truncated expansion

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̂) (4)

of order K − 1, where the parameter θ ∈ RK is a vector of Chebyshev
coefficients and Tk(Λ̂) ∈ Rn×n is the Chebyshev polynomial of order k
evaluated at Λ̂ = 2Λ/λmax − In, a diagonal matrix of scaled
eigenvalues that lie in [−1, 1].
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Recursive formulation for fast filtering

The filtering operation can be written as
y = gθ(L)x =

∑K−1
k=0 θkTk(L̃)x where Tk(L̂) ∈ Rn×n is the Chebyshev

polynomial of order k evaluated at the scaled Laplacian
L̃ = 2L/λmax − In.

Denoting xk = Tk(L̃)x ∈ Rn, use the recurrence relation to compute
xk = 2L̃xk−1 − xk−2 with x0 = xandx1 = L̃x .

This filtering operation costs O(K |E |) operations.
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Learning Filters

The jth output feature map of the sample s is given by

ys,j =

Fin∑
i=1

gθi,j (L)xs,i ∈ Rn (5)

where the xs,i are the input feature maps and the Fin × Fout vectors of
Chebyshev coefficients θi ,j ∈ RK are the layer’s trainable parameters.

Train multiple convolutional layers with the backpropagation
algorithm.

Cost is O(K |E |FinFoutS) (S is the number of samples in mini-batch).
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Graph Coarsening

Doing pooling operation for multiple layers is equivalent to a
multi-scale clustering of the graph that preserves local geometric
structures.

Graph clustering is NP-hard.

Use the coarsening phase of the Graclus multilevel clustering
algorithm.

Graclus uses a greedy algorithm to compute successive coarser
versions of a given graph.

Graclus greedy rule:

Pick an unmarked vertex i
Matching it with one of its unmarked neighbors j that maximizes the
local normalized cut Wij(1/di + 1/dj)
Mark the two matched vertices
The coarsened weights are set as the sum of their weights.
The matching is repeated until all nodes have been explored.
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Fast Pooling of Graph Signals

We proceed in two steps: create a balanced binary tree and rearrange
the vertices

The structure of a balanced binary tree

Regular nodes (and singletons) either have two regular nodes (level 1
vertex 0 in Figure 2), OR
One singleton and a fake node as children (level 2 vertex 0), AND
Fake nodes always have two fake nodes as children (level 1 vertex 1)

Yuting Sun Monday 27th November, 2017 16 / 26



Fast Pooling of Graph Signals

Pooling such a rearranged graph signal is analog to pooling a regular 1D
signal. Figure 2 shows an example of the whole process.
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Numerical Experiments

Filters:
Non-Param (non-parametric and non-localized filters) :
gθ(Λ) = diag(θ)
Spline: gθ(Λ) = Bθ where B ∈ Rn×K is the cubic B-spline basis and
the parameter θ ∈ RK is a vector of control points.
Chebyshev: gθ(Λ) =

∑K−1
k=0 θkTk(Λ̂)

Graclus coarsening algorithm
Some notations:

FCk: a fully connected layer with k hidden units
Pk: a (graph or classical) pooling layer of size and stride k
GCk andCk: a (graph) convolutional layer with k feature maps

All FCk, Ck and GCk layers are followed by a ReLU activation max(x,
0).

The final layer is always a softmax regression

The loss energy E is the cross-entropy with an l2 regularization on the
weights of all FCk layers.

Mini-batches are of size S = 100.
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Revisiting Classical CNNs on MNIST

Benchmark MNIST classification problem: a dataset of 70,000 digits
represented on a 2D grid of size 28× 28.

Our model: an 8-NN graph of the 2D grid which produces a graph of
n = |V | = 976 nodes and |E | = 3198 edges. The weights of a k-NN
similarity graph (between features) are computed as

Wij = exp[−
‖zi − zj‖22

σ2
] (6)

where zi is the 2D coordinated of pixel i.
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Text Categorization on 20NEWS

Text categorization problem on the 20NEWS: 18,846 (11,314 for
training and 7,532 for testing) text documents associated with 20
classes

We extracted the 10,000 most common words from the 93,953 unique
words in this corpus.

Each document x is represented using the bag-of-words model,
normalized across words.

Our model: 16-NN graph with Wij = exp[−
‖zi − zj‖22

σ2
], where zi is

the word2vec embedding of word i, which produced a graph of
n = |V | = 10, 000 nodes and |E | = 132, 834 edges.

All models were trained for 20 epochs by the Adam optimizer with an
initial learning rate of 0.001.

The architecture is GC32 with support K = 5.
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Accuracies of the proposed graph CNN and other methods
on 20NEWS

The proposed model does not outperform the multinomial naive Bayes
classifier on this small dataset. It does defeat fully connected networks,
which require much more parameters.
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Comparison between Spectral Filters and Computational
Efficiency
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Influence of Graph Quality
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Conclusion

Spectral formulation: Theoretical formulation of CNNs on graphs
built on established tools in GSP.

Strictly localized filters: Strictly localized in a ball of radius K.

Low computational complexity: The evaluation complexity of our
filters is linear.

Efficient pooling: After a rearrangement of the vertices as a binary
tree structure, is analog to pooling of 1D signals.

Experimental results:

a useful model
computationally efficient
superior both in accuracy and complexity to the pioneer spectral graph
CNN
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Future Work

Future works will investigate two directions.

Enhance the proposed framework with newly developed tools in GSP.

Explore applications of this generic model to important fields where
the data naturally lies on graphs, which may then incorporate external
information about the structure of the data rather than artificially
created graphs which quality may vary as seen in the experiments.

And, alternate the learning of the CNN parameters and the graph.
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Question

Any Questions?
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