Information \& Entropy. Daniel Boley

Outline.

- Information
- Entropy
- Relative Entropy \& Mutual Information
- Trees of "Twenty Questions"
- Typical Sets

Information

- Imagine 2 kinds of vehicles, cars and trucks, and 2 countries of origin: foreign and domestic.
- basic probabalitities $p_{c}=\operatorname{pr}($ car $), p_{\bar{c}}=\operatorname{pr}(t r u c k), p_{f}=\operatorname{pr}$ (foreign $), p_{\bar{f}}=\operatorname{pr}$ (domestic).
- joint probabilities, $p_{f c}=p r(f o r e i g n \& c a r)$, etc.
such that (for example) $p_{f c}+p_{\bar{f} c}=p_{c}$, etc.,
- conditional probabilities, $q=p_{f \mid c}=\operatorname{pr}($ foreign \mid car $), r=p_{f \mid \bar{c}}=\operatorname{pr}($ foreign \mid truck $)$, etc.
- We have the relations $p_{c}+p_{\bar{c}}=1, p_{f}+p_{\bar{f}}=1, p_{f \mid c}+p_{\bar{f} \mid c}=1, p_{f c}=p_{f \mid c} p_{c}=q p_{c}$, etc.

Information

- $I(p) \stackrel{\text { def }}{=}$ the information obtained upon learning an event with probability p.
- Assumptions:

1. $I(p)>0$ for all $p: 0<p<1$.
2. If $p=1$, the event is absolutely certain, so $I(1)=0$.
3. $I(p)$ is a smooth function of only the numerical probability p.
4. If two events occur in sequence, then the amount of information is additive. If the first event has probability p, and the second event has probability q assuming the first event has occured, then the total information is the sum of the information learned from the first event, plus the additional information learned from the second event once the first event is known.

Information - Car example

- Upon learning that a vehicle is a car, we obtain $I\left(p_{c}\right)$ amount of information.
- Subsequently we learn that the car is foreign, obtaining an additional $I(q)$ amount of the information.
- Can learn same information in one step by learning "foreign car", namely $I\left(p_{f c}\right)=I\left(p_{c} p_{f \mid c}\right)=I\left(p_{c} q\right)$.
- Relation holds regardless of numerical values. So $I(p q)=I(p)+I(q) \forall p, q$.
- Conclude: $I(p)$ must be a logarithmic fcn but base can be arbitrary.

Entropy

- After seeing many vehicles, what's the average information per vehicle?
- total information $=n p_{c} I\left(p_{c}\right)+n p_{\bar{c}} I\left(p_{\bar{c}}\right)$.
- average information $\equiv H_{c} \xlongequal{\text { def }}$ entropy

$$
\begin{aligned}
& =p_{c} I\left(p_{c}\right)+p_{t} I\left(p_{\bar{c}}\right) \\
& =-p_{c} \log p_{c}-p_{\bar{c}} \log p_{\bar{c}} \\
& =-p_{c} \log p_{c}-\left(1-p_{c}\right) \log \left(1-p_{c}\right)
\end{aligned}
$$

- Therefore: entropy is an expectation: average value of information.

Mutual Information

- We actually have three probability distributions in the current situation:
(A) the probability distribution of cars versus trucks ignoring the country of origin,
(B) the probability distribution of country of origin ignoring the type of vehicle,
(C) the probability distribution of 4 subcategories: foreign cars, domestic cars, foreign trucks, domestic trucks.
- This leads to three different entropies:

$$
\begin{array}{ll}
\text { cars vs trucks } & H_{c}=-p_{c} \log p_{c}-p_{\bar{c}} \log p_{\bar{c}} \\
\text { foreign vs domestic } & H_{f}=-p_{f} \log p_{f}-p_{\bar{f}} \log p_{\bar{f}} \\
4 \text { subcategories } & H_{f_{c}}=-p_{f c} \log p_{f c}-p_{\overline{f_{c}}} \log p_{\overline{f c}}-p_{f \bar{c}} \log p_{f \bar{c}}-p_{\bar{f} \bar{c}} \log p_{\bar{f} \bar{c}},
\end{array}
$$

where $H_{f c}$ is called the joint entropy.

Mutual Information

- We learn H_{c} amount of information on average by distinguishing cars from trucks.
- Slowly learn to distinguish foreign from domestic, learning on the average $H_{f c}-H_{c}$ additional information.
- Additional information could be little if almost all the cars were foreign and almost all the trucks were domestic.
We could almost just guess the country of origin just knowing the type of vehicle.
- Conditional Entropy $=H_{f \mid c}$

$$
\begin{aligned}
H_{f \mid c} & \stackrel{\text { def }}{=} \text { conditional entropy } \stackrel{\text { def }}{=} H_{f c}-H_{c} \\
& =\left[-p_{f c} \log p_{f c}-p_{\overline{f_{c}}} \log p_{\overline{f c}}-p_{f \bar{c}} \log p_{f \bar{c}}-p_{\overline{f \bar{c}}} \log p_{\overline{f \bar{c}}}\right]-\left[-p_{c} \log p_{c}-p_{\bar{c}} \log p_{\bar{c}}\right] \\
& =\left[-p_{f c} \log \frac{p_{f c}}{p_{c}}-p_{\overline{\bar{c}_{c}}} \log \frac{p_{\overline{f c}}}{p_{c}}-p_{f \bar{c}} \log \frac{p_{f \bar{c}}}{p_{\bar{c}}}-p_{\overline{f \bar{c}}} \log \frac{p_{\bar{f} \bar{c}}}{p_{\bar{c}}}\right] \\
& =p_{c}\left[-p_{f \mid c} \log p_{f \mid c}-p_{\overline{f \mid c}} \log p_{\bar{f} \mid c}\right]+p_{\bar{c}}\left[-p_{f \mid \bar{c}} \log p_{f \mid \bar{c}}-p_{\bar{f} \mid \bar{c}} \log p_{\bar{f} \mid \bar{c}]}\right] \\
& =p_{c} H_{f / c}+p_{\bar{c}} H_{f / \bar{c}},
\end{aligned}
$$

where $H_{f / c}, H_{f / \bar{c}}$ denote the local entropies of "foreign-ness" local to cars and to trucks.

Mutual Information

- How related are the two attributes?
- If car/truck were independent of foreign/domestic, Then would expect $H_{f \mid c}=H_{f}$.
- If car/truck determined foreign/domestic almost completely, Then would expect $H_{f \mid c}$ to be very small, esp. compared to H_{f}.
- Difference measures how related they are:

$$
\begin{aligned}
M_{f c} & \stackrel{\text { def }}{=} H_{f}-H_{f \mid c} \\
& =\left[-p_{f} \log p_{f}-p_{\bar{f}} \log p_{\bar{f}}\right]-\left[-p_{f c} \log \frac{p_{f c}}{p_{c}}-p_{\overline{f c}} \log \frac{p_{\overline{f c}}}{p_{c}}-p_{f \bar{c}} \log \frac{p_{f \bar{c}}}{p_{\bar{c}}}-p_{\bar{f} \bar{c}} \log \frac{p_{\bar{f} \bar{c}}}{p_{\bar{c}}}\right] \\
& =p_{f c} \log \frac{p_{f c}}{p_{c} p_{f}}+p_{\overline{\bar{f}_{c}}} \log \frac{p_{\overline{f c}}}{p_{c} p_{\bar{f}}}+p_{f \bar{c}} \log \frac{p_{f \bar{c}}}{p_{\bar{c}} p_{f}}+p_{\overline{f \bar{c}}} \log \frac{p_{\bar{f} \bar{c}}}{p_{\bar{c}} p_{\bar{f}}} \\
& =H_{f}+H_{c}-H_{f c}=\text { mutual information. }
\end{aligned}
$$

Mutual Information - Properties

- $M_{f c}$ is symmetric in the two probabilities of f, c.
- When f and c are independent, $M_{f c}=0$.
- When f is completely determined by c (or viceversa), then $H_{c \mid f}=H_{f \mid c}=0$ and so $M_{f c}=H_{f}=H_{c}$.
- binary categories \Longrightarrow

Relative Entropy

- Imagine yesterday spent accumulating probabilities and computing entropies.
- Today we observe a vehicle, identify it as a car: we should be getting $I\left(p_{c}\right)=-\log p_{c}$ amount of pseudo-information.
- But today is Sunday: there are fewer trucks.

So actual probability of "car" is q_{c}.

- So average amount of pseudo-information per vehicle is
$\mathcal{E}_{q}\left(-\log p_{c}\right)=-q_{c} \log p_{c}-q_{\bar{c}} \log p_{\bar{c}}$.
- Average amount of actual information using true underlying probabilities: $\mathcal{E}_{q}\left(-\log q_{c}\right)=-q_{c} \log q_{c}-q_{\bar{c}} \log q_{\bar{c}}$.
- The difference is the relative entropy or Kullback-Leibler "distance":

$$
\begin{aligned}
\mathcal{E}_{q}(-\log p)-H(q) & \stackrel{\text { def }}{=} \operatorname{KL}(q \| p) \\
& =q_{c} \log q_{c}+q_{\bar{c}} \log q_{\bar{c}}-q_{c} \log p_{c}-q_{\bar{c}} \log p_{\bar{c}} \\
& =q_{c} \log \frac{q_{c}}{p_{c}}+q_{\bar{c}} \log \frac{q_{\bar{c}}}{p_{\bar{c}}}
\end{aligned}
$$

Relative Entropy - Further Properties

- Let $f\left(p_{c}\right)=\operatorname{KL}\left(q_{c}| | p_{c}\right)$ using $p_{\bar{c}} \equiv 1-p_{c}$.
- Take derivative with respect to p_{c} :

$$
f^{\prime}\left(p_{c}\right)=\frac{\mathrm{d}}{\mathrm{~d} p_{c}} f\left(p_{c}\right)=\frac{p_{c}-q_{c}}{q_{c}\left(1-q_{c}\right)} .
$$

- It is easily seen that

$$
\begin{array}{ll}
f^{\prime}\left(p_{c}\right)>0 & \text { if } p_{c}>q_{c} \\
f^{\prime}\left(p_{c}\right)=0 & \text { if } p_{c}=q_{c} \\
f^{\prime}\left(p_{c}\right)<0 & \text { if } p_{c}<q_{c}
\end{array}
$$

so the global minimum on $[0,1]$ is achieved at $p_{c}=q_{c}$.

- Likewise, $\frac{\mathrm{d}}{\mathrm{d} q} \mathrm{KL}(q \| p)=-\log \frac{q(1-p)}{p(1-q)}=0$ when $p=q$.
- Furthermore, if $p_{c}=q_{c}$ then $f\left(p_{c}\right)=0$,
- But if $p_{c}=0$ or $p_{c}=1$ (and $p_{c} \neq q_{c}$), then $f\left(p_{c}\right)=\infty$, while if $q_{c}=0$ or 1 , then $f\left(p_{c}\right)=-\log p_{\bar{c}}$ or $-\log p_{c}$. So $\operatorname{KL}\left(q_{c} \| p_{c}\right)$ is not symmetric in its arguments.

Twenty Questions - Compression

- Have N possible items x_{k} each with probabality p_{k} of occurence.

To identify an item, we ask a series of yes/no questions.

- Applications: compression, decision trees.
- The result is a binary tree \mathbf{T} of outcomes.

The root corresponds to the first question.
The left child \Longleftrightarrow NO, the right child \Longleftrightarrow YES.
The tree has N leaves corresponding to each x_{k}.

- Cost for each item is the number of questions needed to identify it. Expected cost is

$$
E(\operatorname{cost}(\mathbf{T}))=\sum_{k=1}^{N} p_{k} \operatorname{cost}\left(x_{k}\right) .
$$

- Want to prove a lower bound on the expected cost.

A Functional

- Define $q\left(x_{k}\right)=\left(\frac{1}{2}\right)^{\operatorname{cost}\left(x_{k}\right)}$

Define $q(\mathbf{T})=\sum_{x_{k} \in \mathbf{T}} q\left(x_{k}\right)$.
Want to prove $q(\mathbf{T})=1$ for all binary trees, by induction.

- A single node has a q-value of $\left(\frac{1}{2}\right)^{0}=1$.
- If a tree \mathbf{T} has subtrees \mathbf{L}, \mathbf{R}, Then $\operatorname{cost}_{\mathbf{T}}($ leaf $)=1+\operatorname{cost}_{\mathbf{L} \text { or } \mathbf{R}}($ leaf $)$. So $q(\mathbf{T})=\frac{1}{2}(q(\mathbf{L})+q(\mathbf{R}))$.
- So $q\left(x_{k}\right)>0$ and $\sum_{k} q\left(x_{k}\right)=1$.

Expected Cost

- Recall $q\left(x_{k}\right)>0$ and $\sum_{k} q\left(x_{k}\right)=1$.

That is: the q_{k} 's behave like probabilities.

- The expected cost for all leaves in \mathbf{T} is (for given probabilities p_{k})

$$
E(\operatorname{cost}(\mathbf{T}))=\sum_{k=1}^{N} p_{k} \operatorname{cost}\left(x_{k}\right)=-\sum_{k=1}^{N} p_{k} \log _{2}\left(q_{k}\right)
$$

- Extending previous argument on KL distance yields result that this expected cost is minimized when $p_{k}=q_{k}$
- Costs $-\log _{2} q_{k}$ must be integers, but when N is large, individual p_{k} 's are small and hence can find integers close to $-\log _{2} p_{k}$.
- Many algorithms exist to construct such a tree, e.g.:
- Huffman encoding (built bottom up).
- Decision Trees (built top down).

Typical set

Distribution of bit strings of length 50

Typical Set Example

- Bit strings of length $n=50$, with $\operatorname{Pr}($ bit $=1)=0.2$ have 2^{50} possibilities.
- Only $.0013=0.13 \%$ of those bit strings have a sum between 6 and 14 , corresponding to an average bit value between 0.12 and 0.28 .
- But the probability that the sum is in $[6,14]$ is about $0.9=90 \%$.
- For bigger n, both bell curves become narrower (as $1 / \sqrt{n}$), hence fraction of strings with average in [.12, 28] shrinks $\longrightarrow 0$, while the probability mass of such strings grows $\longrightarrow 1$.
- As the probability $\operatorname{Pr}($ bit $=1) \longrightarrow 0.5$, the size of the typical set grows toward a fraction that shrinks much more slowly as $n \longrightarrow \infty$.

Use of Typical Set

- Many bounds on expectations in information theory are proved by deriving a bound for a typical set, and showing that all the other cases are so so rare that they can be disregarded [their probability $\longrightarrow 0$].
- Example: Strings of n bits $\left\{S_{n}\right\}, \operatorname{Pr}($ bit $=1)=p<\frac{1}{2}$.
- Ask: how many bits does it take to encode these strings, on the average?
- $\#\left\{S_{n}: \operatorname{Aver}\left(S_{n}\right)=p\right\}=\binom{n}{n p}=\eta \frac{2^{n H(p)}}{\sqrt{n p \bar{p}}}$
where $.3392 \leq \eta \leq .4326$ (from Stirling's approximation to $n!$).
- So need at least $O(n H(p))$ bits to encode just these strings with exactly p one bits.
- $\#\left\{S_{n}: \operatorname{Aver}\left(S_{n}\right) \in[p-\delta, p+\delta]\right\} \approx \eta \cdot 2 n \delta \cdot \frac{2^{n H(p)}}{\sqrt{n p \bar{p}}}$.

So $O(n H(p))$ bits sufficient to encode a random string with probability $\longrightarrow 1$.
Any other strings are so rare that even copying them in their entirety won't add much to the average number of bits needed overall.

