Comparing Feature Vectors for Sentiment
Analysis of Short Texts

Mitch Kinney
University of Minnesota

December 5, 2017

Analyzing non-numerical data

When dealing with non-numerical data such as text or images a
common method to do classification is:

m Create a numerical representation of the data
m Use existing methods to build a model

Much focus of today's research is on finding good combinations.
In text:

m Word2vec with a Convolutional Neural Network (Santos and
Gatti, 2014)

m Bag-of-words with Naive Bayes (Go et al., 2009)
In images:

m Pixel brightness with Fast Fourier Transform (Rodriguez et
al., 2008)

m Spatial Pyramid with Label Consistent Kernel-SVD (Jiang et
al., 2011, Lazebnik et al., 2006)

Analyzing non-numerical data

| am interested in a simpler combination as well as trying out
doc2vec which is an extension of word2vec

m My project will use doc2vec and bag-of-words to create a
numerical representation of short text data

m Then use support vector machines (SVM) with linear and rbf
kernel to do classification

Explaining doc2vec

spain \
Italy \Hadrid

Germany — Rome

walked Berlin

°® ey —
.’ v Ankara

Russia

Moscow
walking Canada —————————— Ottawa
Japan —— e
Vietnam ————— yanoi
China ——————— Beijing

swimming

Male-Female Verb tense Country-Capital

m Based on word2vec which finds semantic relationships between words

m Word2vec uses a neural network to build representations by
attempting to predict words in a sentence given all other words

m Word2vec reference: (Mikolov et al., 2013)

Explaining doc2vec

Classifier

Average/Concatenate oo
/

Paragraph Matrix-----» |W | |W | |W |
I !

Paragraph +the cat sat
id

m Shifting window to update both word and paragraph vector, but
paragraph vector is kept through all windows to add context

m When inferring doc2vec vectors, word vectors are held constant while
new paragraph vectors are added and trained

m Doc2vec reference: (Le et al., 2014)

Model flow chart

Clean Feature
Tweet Vector

“‘ Classify Train SVM

Twitter

Dataset and libraries

STS (Stanford Twitter Sentiment corpus)
m 1.6 million tweets gathered from searching ":)" and ":(".

m Automatically labeled positive or negative based on whether a
happy or sad face is attached to the tweet.

m | am able to use about 200,000 tweets

| will use Python as my coding language. And the main packages |
will use is gensim which implements doc2vec and liblinear which
implements linear SVM.

m liblinear refernce: Fan et al., 2008

Results

Initial results using 200,000 tweets with 70% training, 20% testing
and 10% validation

Method ‘ Accuracy
Doc2vec 76.01%
Bag-of-words | 79.12%
SvD 65.89%

Recall state of the art is about ~85%

Difficulties

| would like to try a form of Kernel PCA using the rbf kernel

m Need to solve an eigenvalue/eigenvector problem for a square
matrix with dimension equal to sample size

m For short text data this needs to be large (>10,000 samples)

Why is bag-of-words beating doc2vec despite claims of superiority?

Left to do

Possibly can try an over complicated Kernel PCA. For each
element in the kernel matrix

T
kij = o(xi)" ¢(x))
where x;, x; are the sample feature vectors.
m Kernel trick is never having to compute ¢(x;)

m Possibly can manually compute ¢(x;)

For instance if x = (x1,x2) and y = (y1,y2) and I'm using the rbf
kernel (from TenaliRaman on Stack Exchange)...

k(x,y) = exp(|[x = y|13)
= exp(|[x[[3) exp(|[¥112) exp(2x"y)

— (2xTy)"
— exp(|lxD) explyB) S P
n=0

Left to do

Another interesting thing to try is to see when doc2vec "tops out”
for length of feature vector
m For instance keeping fixed all other tuning parameters, what is
the minimum length that doc2vec will still do well
m When can we stop adding parameters?
Will doc2vec work better than bag-of-words for documents with
longer text?
m Are tweets too short for doc2vec to capture any relationship
among the words?
m In a previous talk authors used the news20 dataset which were
very long texts so | would like to compare the two again for
this dataset

Thank you!

