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Motivation

• Real world data often nonlinear, with high 

dimensionality

• A proper way to reduce their dimensionality with 

minimum loss of information is needed

• Wide range of methods are available

• Proper choice and optimization

• In this work, three DR methods, LLE, k-PCA, 

and t-SNE will be compared with MNIST hand 

written digit dataset



Outline

• Introduction

• Local linear embedding (LLE)

• Kernel principal component analysis (K-PCA)

• t-distributed stochastic neighbor embedding (t-SNE)
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• Conclusion



LLE

• Linear Local embedding reconstruct the dataset by 

representing each data point as a linear combination of 

its nearest neighbors [1]. 

• Solve the eigenvalue problem to minimize the 

reconstruction error

• Captures the local environment for each data point

Reconstruction error
Solve for 

eigenvalue

S.T. Roweis et al, 2000



kernel PCA

• Select a kernel function (𝜿) and compute the kernel matrix K of data points xi. 

• Center 𝜙(𝑥𝑖), the transformation of data point 𝑥𝑖 on the featured space at zero. 

• Instead of explicitly compute 𝜙’s, we can simple solve for the eigenvalue problem

𝑚𝜆𝛼 = 𝐾𝛼

• Gaussian kernel: 𝐾𝑖𝑗 = exp(−
||𝑥𝑖−𝑥𝑗||

2

2𝑡2
)

• Polynomial kernel: 𝐾𝑖𝑗 = (𝑥𝑖 ∙ 𝑥𝑗)
𝑑



t-distributed stochastic neighbor embedding

• Define a conditional probability of data point xi having data point xj as its neighbor using Gaussian 

probability density.

• This conditional probability can be computed in lower dimension, and should remain unchanged. 

• Minimize the Kullback-Leibler divergence using gradient descent method. Cost function is expressed 

as 

• Want to use varying 𝜎𝑖 for specific environment → search for 𝜎𝑖 according to a fixed perplexity, Pi

• Perplexity is similar to the number of nearest neighbors. 

lower dimension



t-distributed stochastic neighbor embedding

Gradient descent 

method

• In this work, t-SNE is done in 1000 iterations.



Examples with Artificial Data

Swiss Roll
LLE, K = 12

k-PCA with Gaussian t = 25 t-SNE, p = 50

LLE, K = 18
S-curve

k-PCA with Gaussian t = 20 t-SNE, p = 50



Experiment setup

• MNIST hand-written digits (0~9) database

• Training set: 60000 28x28 gray scale images

• Testing set: 10000 28x28 gray scale images

• Randomly select from MNIST training set. 



LLE on MNIST Data

• Reconstruction error with LLE is very large on MNIST, though on artificial data is 

much smaller.

N = 500, K = 25



LLE with Fewer Digits

• If manipulate the input such that it contains only two digits, LLE is able to 

differentiate them

• Still suffers from noise. 
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N = 500+500, K = 18 N = 2000+2000, K = 18

noise



k-PCA on MNIST Data

• With Gaussian kernel, data mapped to 2D space shows large error rates. Input with less digits 

generates better results.

• Error rate can be lowered if the data is mapped to higher dimension.

• Overall, lower error rate if the Gaussian parameter increases. 

N = 2000+2000, t = 20
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t-SNE on MNIST Data

N = 10000, perp = 100N = 5000, perp = 100
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t-SNE on MNIST Data

• t-SNE is able differentiate the 10 digits well. 

• Error can be reduced if large perplexity is selected. But no clear improvement in 

visualization.

• “4” and “9” are mixed up

N = 5000, perp = 250
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Conclusions

• LLE produces large reconstruction error on MNIST dataset. It could work on binary input, while 

suffering from noise.

• Performance of kernel PCA mapping depends of the dimension of the target space and the 

Gaussian parameter. It could however distinguish the less digits are given.

• t-SNE work very well on large scale MINST data. The cost error decreases if higher perplexity was 

used, though it has limited improvement on data visualization. 



Thanks!



Backup slides: LLE and t-SNE on Artificial Data


