Weighted L_{1} Penalized Logistic Regression with Principal Components

Wenjun Lang
University of Minnesota
langx239@umn.edu

December 6, 2017

Principal Components

Principal Components

- An orthogonal transformation of input matrix X.
- The first few principal components explain major amount of variation of X.

Classification with Principal Components

- Achieve dimension reduction.
- Get better prediction accuracy.
- E.g.: eigenface.

Classification with Principal Components

Eigenface

First row: the leftmost is the average face and the others are top two eigenfaces.
Second row: eigenfaces with least three eigenvalues.

Select First k Principal Components?

- May not work well if y is strongly correlated with last few principal components.

$\mathrm{k}=1$, poor classification $k=2$, no dimension reduction

Better Selection of PC?

We want to achieve...

- PCs with higher variances should be more important than PCs with lower variances.
- Should also consider the association between X and Y .

Weighted L_{1} Penalized Logistic Regression with Principal Components

- $X=U D V^{\top}$,
- U: normalized principal components of X.
- D: diagonal matrix of singular values of X.

Weighted L_{1} Penalized Logistic Regression in PC space

$$
\begin{aligned}
\hat{\gamma} & =\underset{\gamma}{\arg \min }-\ell(\gamma)+\lambda\left\|D^{-1} \gamma\right\|_{1} \\
\ell(\gamma) & =\underset{\gamma}{\arg \min }-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} U_{i}^{T} \gamma-\log \left(1+\exp \left(U_{i}^{T} \gamma\right)\right)\right)
\end{aligned}
$$

- $D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{p}\right)$. Larger d_{i}, larger variance of the PC.

$$
\hat{\gamma}=\underset{\gamma}{\arg \min }-\ell(\gamma)+\lambda \sum_{i=1}^{n}\left|\frac{\gamma_{i}}{d_{i}}\right|
$$

- Smaller penalty on PCs with higher variances.

Coefficients for X :

$$
\hat{\beta}=\left(D V^{T}\right)^{-1} \hat{\gamma}
$$

Optimization Problem

$$
\underset{\gamma}{\operatorname{Minimize}}-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} U_{i}^{T} \gamma-\log \left(1+\exp \left(U_{i}^{T} \gamma\right)\right)\right)+\lambda\left\|D^{-1} \gamma\right\|_{1}
$$

- U: Normalized Principal Components of X.
- D: Diagonal matrix of singular values of X.

MM Algorithm

Majorization Step:

$$
\begin{aligned}
Q\left(\gamma \mid \hat{\gamma}^{\text {old }}\right) & =-\frac{1}{n}\left[\ell\left(\hat{\gamma}^{\text {old }}\right)+\nabla \ell\left(\hat{\gamma}^{\text {old }}\right)^{T}\left(\gamma-\hat{\gamma}^{\text {old }}\right)\right. \\
& \left.-\frac{1}{2}\left(\frac{1}{4}+10^{-6}\right)\left(\gamma-\hat{\gamma}^{\text {old }}\right)^{T} U^{* T} U^{*}\left(\gamma-\hat{\gamma}^{\text {old }}\right)\right]+\lambda \sum_{j=2}^{p+1} \frac{1}{d_{j}}\left|\gamma_{j}\right|
\end{aligned}
$$

where

$$
U^{*}=\left(\mathbb{1}_{n}, U\right)
$$

MM Algorithm

Note that

$$
U^{* T} U^{*}=\left[\begin{array}{lllll}
n & & & \ldots & \\
& 1 & & \cdots & \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
& & & \ldots & 1
\end{array}\right]
$$

MM Algorithm

$$
\begin{aligned}
Q\left(\gamma \mid \hat{\gamma}^{\text {old }}\right) & =-\frac{1}{n} \ell\left(\hat{\gamma}^{\text {old }}\right)-\frac{1}{n} \sum_{j=1}^{p+1}\left[\nabla_{j} \ell\left(\hat{\gamma}^{\text {old }}\right)\right)\left(\gamma_{j}-\hat{\gamma}_{j}^{\text {old }}\right) \\
& \left.-\frac{1}{2}\left(\frac{1}{4}+10^{-6}\right)\left\|u_{j}\right\|^{2}\left(\gamma_{j}-\hat{\gamma}_{j}^{\text {old }}\right)^{2}\right]+\lambda \sum_{j=2}^{p+1} \frac{1}{d_{j}}\left|\gamma_{j}\right|
\end{aligned}
$$

Minimization Step:

$$
\hat{\gamma}_{j}^{\text {new }}=S\left(\hat{\gamma}_{j}^{\text {old }}+\frac{\nabla_{j} \ell\left(\hat{\gamma}^{\text {old }}\right)}{\left(\frac{1}{4}+10^{-6}\right)\left\|u_{j}\right\|^{2}}, \frac{n \lambda}{\left(\frac{1}{4}+10^{-6}\right)\left\|u_{j}\right\|^{2} d_{j}}\right)
$$

Numerical Experiments

Data

- MNIST Data
- Left to right: first, second, third principal component

- Left to right: twenty-fifth, hundredth, five hundredth principal component

Numerical Results

Methods

- Logistic regression with conventional PCA.
- Penalized logistic regression in the space of principal components
- LDA

Approach	LR with PCA	PLR with PC	LDA
Prediction Error(\%)	7.04	6.58	8.13

