Dog Breed Identification

Presented by Yue Bi

Outline

- Dataset
- Model
- Experiment Results

Outline

- Dataset
- Model
- Experiment Results

Figure. Stanford Dogs Dataset

Figure. Stanford Dogs Dataset

Image id	Breed	
000bec180eb18c7604dcecc8fe0dba07	boston_bull	
001513dfcb2ffafc82cccf4d8bbaba97	dingo	
001cdf01b096e06d78e9e5112d419397	pekinese	
00214f311d5d2247d5dfe4fe24b2303d	bluetick	
0021f9ceb3235effd7fcde7f7538ed62	golden_retriever	
002211c81b498ef88e1b40b9abf84e1d	bedlington_terrier	
00290d3e1fdd27226ba27a8ce248ce85	bedlington_terrier	
002a283a315af96eaea0e28e7163b21b	borzoi	
003df8b8a8b05244b1d920bb6cf451f9	basenji	
0042188c895a2f14ef64a918ed9c7b64	scottish_deerhound	

Table. Stanford Dogs Dataset (labels)

Dataset Overview

- Dataset: 10222 images
- Breed: 120
- Pick top 25 frequent breed to classify (2668 images)
- Randomly pick 80% of the images as training set and other 20% as validation set

Order	Breed	Order	Breed
1	scottish_deerhound	14	cairn
2	maltese_dog	15	beagle
3	afghan_hound	16	japanese_spaniel
4	entlebucher	17	australian_terrier
5	bernese_mountain_dog	18	blenheim_spaniel
6	shih-tzu	19	miniature_pinscher
7	great_pyrenees	20	irish_wolfhound
8	pomeranian	21	lakeland_terrier
9	basenji	22	saluki
10	samoyed	23	papillon
11	airedale	24	whippet
12	tibetan_terrier	25	siberian_husky
13	leonberg		

Table. Top 25 frequent breed (labels)

Outline

- Dataset
- Model
- Experiment Results

VGG16* Model

- Prepossessing
- Convolution Parameters
- Activation Function
- Pooling
- Fully-Connected Layers

• *Visual Geometry Group, University of Oxford

Prepossessing Steps

• Data Augmentation: horizontal flip (double dataset size)

Figure. horizontal flip

Prepossessing Steps

• Fix image size to 224×224

Figure. fix image size

*Netscope (VGG16)

Convolution Parameters

• Kernel Size: $3 \times 3 \times 3$

Figure. convolution kernel size

Convolution Parameters

• Stride: 1 pixel

Figure. convolution stride

Activation Function

• ReLU

Figure. ReLU function

• Max-pooling over a 2×2 pixel window with stride 2.

• Average-pooling over a 2×2 pixel window with stride 2.

Figure. average-pooling example

- A stack of convolutional layers is followed by three Fully-Connected layers:
- The first two have 4096 channels each.
- The third contains 1000 channels.

- Dropout regularization for the first two fully-connected layers to reduce overfitting.
- Dropout ratio is 0.5.

Figure. dropout example

Multinomial Logistic Regression

 Use Multinomial Logistic Regression as the last layer of the network (like softmax)

$$Pr(Y_i = 1) = \frac{e^{\beta_1 X_i}}{\sum_{k=1}^{25} e^{\beta_k X_i}} \qquad Pr(Y_i = 2) = \frac{e^{\beta_2 X_i}}{\sum_{k=1}^{25} e^{\beta_k X_i}} \qquad \dots \qquad Pr(Y_i = 25) = \frac{e^{\beta_2 5 X_i}}{\sum_{k=1}^{25} e^{\beta_k X_i}}$$

$$L(b_k) = \sum_{i=1}^n \left(\frac{e^{X_i b_k}}{1 + e^{X_i b_k}}\right)^{Y_i} \left(\frac{1}{1 + e^{X_i b_k}}\right)^{1 - Y_i}$$

$$\hat{\beta}_k = \arg\max_{b_k} L(b_k)$$

Outline

- Dataset
- Model
- Experiment Results

Results

Max-pooling		Average-pooling	
Accuracy	0.874	Accuracy	0.866

Table. Results of 25 classes(Training set: 4228 images, Test set: 1108 images)

Results of Different Number of Classes

# of class	25	12	6
Accuracy	0.874	0.921	0.946
Training set size	4228	2126	1104

Table. Results of different number of classes (Max-pooling)

Show Errors

Show Errors

Show Errors

- Detect mixture of breeds
- Help determine the breed of dog from shelter easily

Thank you !

- [1]: Karen Simonyan, Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR, 2015.
- [2]: <u>https://www.kaggle.com/gaborfodor/keras-pretrained-models</u>
- [3]: <u>https://keras.io/applications/#vgg16</u>
- [4]: <u>https://en.wikipedia.org/wiki/Multinomial_logistic_regression</u>