A Survey on Riemannian Geometry of SPD Matrices and Its Applications

Yunpeng Shi

December 13, 2017

Yunpeng Shi

December 13, 2017 1 / 17

< 4 →

Content

1 Introduction

- 2 Dictionary Learning
- **3** Kernel Methods
- **4** Conclusion

3

<ロ> (日) (日) (日) (日) (日)

• Symmetric positive definite matrices

3

< ロ > < 同 > < 三 > < 三

• Symmetric positive definite matrices

Applications

- Covariance region descriptors for detection and recognition
- Texture classification
- Object tracking, face recognition
- Diffusion tensor images (DTI)
- Motion segmentation

- The space of $d \times d$ SPD matrices Sym_d^+ is not a vector space
- The Euclidean distance does not correctly measure the similarities among SPD matrices

- The space of $d \times d$ SPD matrices Sym_d^+ is not a vector space
- The Euclidean distance does not correctly measure the similarities among SPD matrices
- What is the true underlying geometry?

• Riemannian manifold is a differentiable manifold with a family smoothly varying inner products (Riemannian metric) on tangent spaces

Image: A match a ma

Riemannian Geometry

• The space of $d \times d$ SPD matrices Sym_d^+ is a Riemannian manifold

Metrics for Measuring Similarities

Metric Name	Formula	Geodesic Distance	Positive Definite Gaussian Kernel $\forall \sigma > 0$	
Log-Euclidean	$\left\ \log(\mathbf{S}_1) - \log(\mathbf{S}_2)\right\ _F$	Yes	Yes	
Affine-Invariant	$\ \log(\mathbf{S}_1^{-1/2}\mathbf{S}_2\mathbf{S}_1^{-1/2})\ _F$	Yes	No	
Cholesky	$\ \operatorname{chol}(\mathbf{S}_1) - \operatorname{chol}(\mathbf{S}_2)\ _F$	No	Yes	
Power-Euclidean	$rac{1}{lpha} \left\ {{f S}_1^lpha - {f S}_2^lpha} ight\ _F$	No	Yes	
Root Stein Divergence	$\left[\log \det \left(\frac{1}{2}\mathbf{S}_1 + \frac{1}{2}\mathbf{S}_2\right) - \frac{1}{2}\log \det(\mathbf{S}_1\mathbf{S}_2)\right]^{1/2}$	No	No	

For S_1 , $S_2 \in Sym_d^+$, define multiplication

$$\boldsymbol{S}_1 \odot \boldsymbol{S}_2 = \exp(\log \boldsymbol{S}_1 + \log \boldsymbol{S}_2),$$

then Sym_d^+ becomes a Lie group. Here both exp and \log are matrix exponential and matrix logarithm.

(日) (周) (三) (三)

- Dictionary: bases that spans the space of human face, where each face image can be expressed as linear combination of those bases
- Representation: the coefficient of the linear combination

$$\min \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{R}\|_F^2 \text{ subject to } \|\boldsymbol{r}_i\|_0 \leq T_0.$$

•
$$X = [x_1, ..., x_N], D = [d_1, ..., d_m]$$

• Representation: the coefficient of the linear combination

- Stein Divergence: $S(X, Y) = \log(\det \frac{X+Y}{2}) \frac{1}{2}\log(\det(XY))$
 - induces kernel $k(\mathbf{X}, \mathbf{Y}) = e^{-\sigma \mathbf{S}(\mathbf{X}, \mathbf{Y})}$ for some $\sigma > 0$
 - (Harandi et al. ECCV 2012) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$

イロト イポト イヨト イヨト 二日

- Stein Divergence: $S(X, Y) = \log(\det \frac{X+Y}{2}) \frac{1}{2}\log(\det(XY))$
 - induces kernel $k(\mathbf{X}, \mathbf{Y}) = e^{-\sigma \mathbf{S}(\mathbf{X}, \mathbf{Y})}$ for some $\sigma > 0$
 - (Harandi et al. ECCV 2012) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$
- Log-Euclidean distance: $d_{le}(\boldsymbol{X}, \boldsymbol{Y}) = \|\log \boldsymbol{X} \log \boldsymbol{Y}\|_F$
 - induces kernel $k(\mathbf{X}, \mathbf{Y}) = e^{-\sigma d_{le}(\mathbf{X}, \mathbf{Y})}$ for all $\sigma > 0$
 - (Li et al. ICCV 2013) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$

- Stein Divergence: $S(X, Y) = \log(\det \frac{X+Y}{2}) \frac{1}{2}\log(\det(XY))$
 - induces kernel $k(X, Y) = e^{-\sigma S(X, Y)}$ for some $\sigma > 0$
 - (Harandi et al. ECCV 2012) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$
- Log-Euclidean distance: $d_{le}(\boldsymbol{X}, \boldsymbol{Y}) = \|\log \boldsymbol{X} \log \boldsymbol{Y}\|_F$
 - induces kernel $k(\mathbf{X}, \mathbf{Y}) = e^{-\sigma d_{le}(\mathbf{X}, \mathbf{Y})}$ for all $\sigma > 0$
 - (Li et al. ICCV 2013) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$
- AIRM: $d_R(\boldsymbol{X}, \boldsymbol{Y}) = \|\log(\boldsymbol{X}^{-\frac{1}{2}}\boldsymbol{Y}\boldsymbol{X}^{-\frac{1}{2}})\|_F$
 - Geodesic distance, most faithful to Riemannian geometry
 - Hard to kernelize
 - + (Cherian and Sra 2017) $\min \frac{1}{2} \sum_{j=1}^{N} d_R^2(\boldsymbol{X}_j, \boldsymbol{D}\boldsymbol{r}_j) + sp(\boldsymbol{r}_j) + \Omega(\boldsymbol{D})$

- Stein Divergence: $S(X, Y) = \log(\det \frac{X+Y}{2}) \frac{1}{2}\log(\det(XY))$
 - induces kernel $k(X, Y) = e^{-\sigma S(X, Y)}$ for some $\sigma > 0$
 - (Harandi et al. ECCV 2012) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$
- Log-Euclidean distance: $d_{le}(\boldsymbol{X}, \boldsymbol{Y}) = \|\log \boldsymbol{X} \log \boldsymbol{Y}\|_F$
 - induces kernel $k(\mathbf{X}, \mathbf{Y}) = e^{-\sigma d_{le}(\mathbf{X}, \mathbf{Y})}$ for all $\sigma > 0$
 - (Li et al. ICCV 2013) $\min \sum_{j} \|\Phi(\boldsymbol{X}_{j}) - \sum_{i} r_{ji} \Phi(\boldsymbol{D}_{i})\|_{2}^{2} + \lambda \|\boldsymbol{r}_{j}\|_{1}$
- AIRM: $d_R(\boldsymbol{X}, \boldsymbol{Y}) = \|\log(\boldsymbol{X}^{-\frac{1}{2}}\boldsymbol{Y}\boldsymbol{X}^{-\frac{1}{2}})\|_F$
 - Geodesic distance, most faithful to Riemannian geometry
 - Hard to kernelize
 - + (Cherian and Sra 2017) $\min \frac{1}{2} \sum_{j=1}^{N} d_R^2(\boldsymbol{X}_j, \boldsymbol{D}\boldsymbol{r}_j) + sp(\boldsymbol{r}_j) + \Omega(\boldsymbol{D})$

Performance Comparison

3

<ロ> (日) (日) (日) (日) (日)

Performance Comparison

Method	Accuracy (%)
Riem-DL + Riem-SC	74.9
LE-DL + LE-SC	73.4
Frob-DL + Frob SC	23.5
Kernelized LE DLSC [13]+ [34]	47.9
Kernelized Stein DLSC [12]+ [34]	76.7
Tensor DL+SC [52]	37.1
GDL [15]	47.7
Random DL + Riem-SC	70.3

TABLE I BRODATZ TEXTURE DATASET

Method	Accuracy (%)
Riem-DL + Riem-SC	80.5
LE-DL + LE-SC	80.0
Frob-DL + Frob SC	77.6
Kernelized LE DLSC [13]+ [34]	86.6
Kernelized Stein DLSC [12] [34]	71.6
Tensor DL+SC [52]	67.4
GDL [15]	71.0
Random DL + Riem-SC	54.6

TABLE III ETHZ PEOPLE DATASET

Method	Accuracy (%)
Riem-DL + Riem-SC	80.0
LE-DL + LE-SC	80.5
Frob-DL + Frob SC	54.2
Kernelized LE DLSC [13]+ [34]	86.0
Kernelized Stein DLSC [12]+ [34]	85.7
Tensor DL+SC [52]	68.1
GDL [15]	43.0
Random DL + Riem-SC	62

TABLE II RGBD OBJECTS

Method	Accuracy (%)
Riem-DL + Riem-SC	92.4
LE-DL + LE-SC	82.6
Frob-DL + Frob SC	82.9
Kernelized LE DSC [13]+ [34]	93.1
Kernelized Stein DLSC [12] + [34]	70.1
GDL [15]	92.0
Random DL + Riem-SC	83.9

TABLE IV Youtube Faces Dataset

イロト イポト イヨト イヨト

December 13, 2017 11 / 17

- Log-Euclidean distance is proved to be kernelizable
- Map Sym_d^+ to infinite dimensional feature space and apply Euclidean geometry

Algorithms	Input	Output
kSVM	(\boldsymbol{X}_i, y_i)	hyperplane in feature space
kPCA	$\boldsymbol{X}_i \in Sym_d^+$	PCA for kernel matrix
kernel k-means	$\boldsymbol{X}_i \in Sym_d^+$	k-means in feature space

• (Jayasumana et al. CVPR 2013)

Applications of Kernel Methods

Image Categorization

6	Ø	6	0
m	-479	ð	A
æ	~		
>	₼	M	-

Nh of	Euclidean		Cholesky		Power-Euclidean		Log-Euclidean	
classes	KM	KKM	KM	KKM	KM	KKM	KM	KKM
3	72.50	79.00	73.17	82.67	71.33	84.33	75.00	94.83
4	64.88	73.75	69.50	84.62	69.50	83.50	73.00	87.50
5	54.80	70.30	70.80	82.40	70.20	82.40	74.60	85.90
6	50.42	69.00	59.83	73.58	59.42	73.17	66.50	74.50
7	42.57	68.86	50.36	69.79	50.14	69.71	59.64	73.14
8	40.19	68.00	53.81	69.44	54.62	68.44	58.31	71.44

3

Image: A match a ma

Applications of Kernel Methods

Image Segmentation

Ellipsoids

Riemannian kernel

Fractional Anisotropy

Euclidean kernel

Image: A match a ma

• AIRM

- Pros: geodesic distance
- Cons: hard to kernelize

3

イロト イ団ト イヨト イヨト

AIRM

- Pros: geodesic distance
- Cons: hard to kernelize
- Stein Divergence
 - Pros: kernelizable, but only for certain parameters; efficient
 - Cons: not geodesic distance

3

Image: A match a ma

• AIRM

- Pros: geodesic distance
- Cons: hard to kernelize
- Stein Divergence
 - Pros: kernelizable, but only for certain parameters; efficient
 - Cons: not geodesic distance
- Log-Euclidean
 - Pros: kernelizable; geodesic

< 67 ▶

• AIRM

- Pros: geodesic distance
- Cons: hard to kernelize
- Stein Divergence
 - Pros: kernelizable, but only for certain parameters; efficient
 - Cons: not geodesic distance
- Log-Euclidean
 - Pros: kernelizable; geodesic
- Geodesic: AIRM > Log-Euclidean > Stein

- ×

- AIRM
 - Pros: geodesic distance
 - Cons: hard to kernelize
- Stein Divergence
 - Pros: kernelizable, but only for certain parameters; efficient
 - Cons: not geodesic distance
- Log-Euclidean
 - Pros: kernelizable; geodesic
- Geodesic: AIRM > Log-Euclidean > Stein
- Efficiency: Stein ≈ Log-Euclidean > AIRM

- AIRM
 - Pros: geodesic distance
 - Cons: hard to kernelize
- Stein Divergence
 - Pros: kernelizable, but only for certain parameters; efficient
 - Cons: not geodesic distance
- Log-Euclidean
 - Pros: kernelizable; geodesic
- Geodesic: AIRM > Log-Euclidean > Stein
- Efficiency: Stein \approx Log-Euclidean > AIRM
- Kernelization: Log-Euclidean > Stein > AIRM

- Algorithm designed for large SPD matrices (Harandi et al. 2017)
- Riemannian Networks (Huang and Gool 2017)
- Theory of kernel methods on AIRM

(日) (同) (三) (三)

- Certain non-Euclidean metrics are more faithful to the Sym_d^+
- Selecting correct metric is important
- Geometry-aware methods are emerging in the past 5 years
- · Geometry-aware methods for other manifolds are also being studied