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Why we care about SPD matrices?

� Symmetric positive definite matrices

Applications

� Covariance region descriptors for detection and recognition

� Texture classification

� Object tracking, face recognition

� Diffusion tensor images (DTI)

� Motion segmentation
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The Issue of Euclidean Geometry

� The space of d × d SPD matrices Sym+d is not a vector space

� The Euclidean distance does not correctly measure the similarities
among SPD matrices

� What is the true underlying geometry?
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Riemannian Geometry

� Riemannian manifold is a differentiable manifold with a family
smoothly varying inner products (Riemannian metric) on tangent
spaces
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Riemannian Geometry

� The space of d × d SPD matrices Sym+d is a Riemannian manifold

Yunpeng Shi December 13, 2017 6 / 17



Metrics for Measuring Similarities

For S1, S2 ∈ Sym+d , define multiplication

S1 ⊙S2 = exp(logS1 + logS2),

then Sym+d becomes a Lie group. Here both exp and log are matrix
exponential and matrix logarithm.
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Dictionary Learning in face recognition setting

� Dictionary: bases that spans the space of human face, where each
face image can be expressed as linear combination of those bases

� Representation: the coefficient of the linear combination

min ∥X −DR∥2F subject to ∥ri∥0 ≤ T0.

� X = [x1, ...,xN ], D = [d1, ...,dm]
� Representation: the coefficient of the linear combination
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Riemannian Dictionary Learning

� Stein Divergence: S(X,Y ) = log(det X+Y
2 ) − 1

2 log(det(XY ))
▸ induces kernel k(X,Y ) = e−σS(X,Y ) for some σ > 0
▸ (Harandi et al. ECCV 2012)

min∑j ∥Φ(Xj) −∑i rjiΦ(Di)∥22 + λ∥rj∥1

� Log-Euclidean distance: dle(X,Y ) = ∥ logX − logY ∥F
▸ induces kernel k(X,Y ) = e−σdle(X,Y ) for all σ > 0
▸ (Li et al. ICCV 2013)

min∑j ∥Φ(Xj) −∑i rjiΦ(Di)∥22 + λ∥rj∥1

� AIRM: dR(X,Y ) = ∥ log(X− 1
2Y X−

1
2 )∥F

▸ Geodesic distance, most faithful to Riemannian geometry
▸ Hard to kernelize
▸ (Cherian and Sra 2017) min 1

2 ∑
N
j=1 d

2
R(Xj ,Drj) + sp(rj) +Ω(D)
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Performance Comparison
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Kernel Methods on Sym+
d

� Log-Euclidean distance is proved to be kernelizable

� Map Sym+d to infinite dimensional feature space and apply Euclidean
geometry

� (Jayasumana et al. CVPR 2013)

Algorithms Input Output

kSVM (Xi, yi) hyperplane in feature space

kPCA Xi ∈ Sym+d PCA for kernel matrix

kernel k-means Xi ∈ Sym+d k-means in feature space
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Applications of Kernel Methods

Image Categorization

Yunpeng Shi December 13, 2017 13 / 17



Applications of Kernel Methods

Image Segmentation
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Summary

� AIRM
▸ Pros: geodesic distance
▸ Cons: hard to kernelize

� Stein Divergence
▸ Pros: kernelizable, but only for certain parameters; efficient
▸ Cons: not geodesic distance

� Log-Euclidean
▸ Pros: kernelizable; geodesic

� Geodesic: AIRM > Log-Euclidean > Stein

� Efficiency: Stein ≈ Log-Euclidean > AIRM

� Kernelization: Log-Euclidean > Stein > AIRM
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Future Directions

� Algorithm designed for large SPD matrices (Harandi et al. 2017)

� Riemannian Networks (Huang and Gool 2017)

� Theory of kernel methods on AIRM
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Conclusion

� Certain non-Euclidean metrics are more faithful to the Sym+d
� Selecting correct metric is important

� Geometry-aware methods are emerging in the past 5 years

� Geometry-aware methods for other manifolds are also being studied
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