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Motivation - Gaussian Graphical Model

Suppose p-dimensional multivariate normal random vector
X = (X1,X2, . . . ,Xp)T ∼ N(µ∗,Σ∗), Θ∗ = (Σ∗)−1. When i 6= j ,

Θ∗ij = 0 ⇐⇒ Xi ⊥⊥ Xj |X{1,2,...,p}\{i ,j}

Correspondingly for graph G = (V ,E ),

(i , j) ∈ E ⇐⇒ Θ∗ij 6= 0

which means that the edge (i , j) is in the graph G if and only if
Θ∗ij = 0.

Obviously, the sparse precision matrix estimation method is
indispensable when we want to build sparse graph based on the
sample covariance matrix.

Yiyi Yin (Uni. of Minnesota, Twin Cities) Precision Matrix Estimation December 7, 2017 2 / 20



Sparse Precision Matrix Estimation Application Example

A flow cytometry dataset on p = 11 proteins and n = 7466 cells, from
[Sachs et al.(2005)Sachs, Perez, Pe’er, Lauffenburger, and Nolan].

They fit a directed acyclic graph (DAG) to the data.
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Sparse Precision Matrix Estimation Application Example
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Sparse Precision Matrix Estimation Application Example
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Graphical Lasso

[Friedman et al.(2008)Friedman, Hastie, and Tibshirani] propposed the
graphical lasso as the precision matrix estimator.

Θ̂ = argmin
Θ�0

〈Θ, Σ̂〉 − logdet(Θ) + λ||Θ||1,off (1)

Let Σ∗ and Σ̂ denote the population and sample covariance matrix.
Let Θ∗ = (Σ∗)−1 denote the population precision matrix.

Graphical lasso is also the maximum likelihood estimator.
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More General Framework

In fact, the graphical lasso can be viewed as a special case of a more
general definition of precision matrix estimator.

Θ̂ = argmin
Θ�0

L(Θ, Σ̂) + λ||Θ||1,off (2)

where the loss function L(Θ, Σ̂) must satisfy two conditions:
(i) The loss function L(Θ, Σ̂) is a smooth convex function of Θ.
(ii) The unique minimizer of L(Θ, Σ̂) is (Σ̂)−1.

For graphical lasso, the loss function
Lglasso(Θ, Σ̂) = 〈Θ, Σ̂〉 − logdet(Θ). It can be proved that Lglasso

satisfies condition (i) and (ii).
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Sparse precision matrix estimation via lasso penalized
D-trace loss

[Zhang and Zou(2014)] suggested using LD(Θ, Σ̂) = 1
2〈Θ

2, Σ̂〉 − tr(Θ),
where the the precision matrix estimator is the minimizer of lasso
penalized D-trace loss.

Θ̂ = argmin
Θ�0

1

2
〈Θ2, Σ̂〉 − tr(Θ) + λ||Θ||1,off (3)

It can be proved that LD also satisfies condition (i) and (ii).

They solved the problem by alternating direction method of
multipliers (ADMM).

The algorithm is relative slow in terms of computation time.
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Our suggested method

We relax the positive definiteness constraint of the precision matrix but
only keep the symmetric constraint.

Θ̂ = argmin
ΘT =Θ

1

2
〈Θ2, Σ̂〉 − tr(Θ) + λ||Θ||1,off (4)

People don’t care that much about the positive definiteness in real
world applications.

We don’t have to solve it by ADMM.
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Coordinate Descent

We rewrite the lasso penalized D-trace loss with symmetric constrain
minimization problem in the following way.

Θ̂ = argmin
ΘT =Θ

1

2
〈Θ2, Σ̂〉 − tr(Θ) + λ||Θ||1,off

= argmin
ΘT =Θ

p∑
j=1

1

2
θTj Σ̂θj −

p∑
i=1

θii + 2λ
∑

1≤i<j≤p
θij

(5)

The univariate optimization problem of θij when i = j , i.e. θii is

θ̂ii = argmin
θii

1

2
σ̂iiθ

2
ii + (

∑
k 6=i

σ̂ikθik)θii − θii

=
1−

∑
k 6=i σ̂ikθik

σ̂ii

(6)

where (Σ̂)ij = σ̂ij .

Yiyi Yin (Uni. of Minnesota, Twin Cities) Precision Matrix Estimation December 7, 2017 10 / 20



Coordinate Descent

The univariate optimization problem of θij when i 6= j is

θ̂ij = argmin
θij

1

2
(σ̂ii + σ̂jj)θ

2
ij + (

∑
k 6=i

σ̂ikθjk +
∑
k 6=j

σ̂jkθik)θij + 2λ|θij |

= s(−
∑

k 6=i σ̂ikθjk +
∑

k 6=j σ̂jkθik

σ̂ii + σ̂jj
,

2λ

σ̂ii + σ̂jj
)

= s(−
∑
k 6=i

σ̂ikθjk −
∑
k 6=j

σ̂jkθik , 2λ)/(σ̂ii + σ̂jj)

(7)

where s(z , λ) = sign(z)(|z | − λ)+ represent the soft thresholding function.
For each λ, we cyclically update one parameter at a time until
convergence.
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Solution Path

We consider providing a solution path which includes a list of N (say
N = 100) estimated precision matrices corresponding to a list of N
different λ values taking λ1 = λmax, λ2 = N−1

N λmax, . . . , λN = 1
Nλmax.

λmax: the smallest value such that Θ̂ have as many zeros as possible

Warm Start: When computing Θ̂(Σ̂, λi ), we firstly initialize it as
Θ̂(Σ̂, λi−1)

Active Set: Iteratively check the KKT condition, add elements that
violate KKT condition into active set and update until the KKT
condition is satisfied.
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Numerical Results

N(0,Σ∗), where Θ∗ = (Σ∗)−1. Θ∗ii = 1,Θ∗ij = 0.2 for 1 ≤ |i − j | ≤ 2
and Θ∗ij = 0 otherwise.

We generated data iid from N(0,Σ∗) taking sample size n = 1000
and different p values.

The algorithm was coded in C and called in R.
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Computation Time for Solution Path

Figure: Number of seconds needed for computing the estimated precision matrices
solution path (N = 100) when p take 50, 100, . . . , 450

Yiyi Yin (Uni. of Minnesota, Twin Cities) Precision Matrix Estimation December 7, 2017 14 / 20



Computation Time for Single Precision Matrix Estimation

λ Non-zero Fraction Time (seconds)

0.001 0.9851 8.068
0.017 0.6669 4.079
0.033 0.3370 1.509
0.274 0.0025 0.070

Table: When p = 400, computing time for different penalization parameter λ
values, fraction of non-zeros elements in estimated precision matrices are about 1,
2/3, 1/3 and 0
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Estimation Accuracy Comparison

We still consider the same setting that generating data i.i.d. from
N(0,Σ∗), where Θ∗ii = 1,Θ∗ij = 0.2 for 1 ≤ |i − j | ≤ 2 and Θ∗ij = 0
otherwise. We take sample size n = 1000 and p = 100. We compared
graphical lasso with our method in five quantities:

Frobenius norm E ||Θ̂−Θ∗||F where ||X ||F =
√∑

i ,j X
2
ij

Spectral norm E ||Θ̂−Θ∗||2, where
||X ||2 =

√
λmax(XTX ) = σmax(X ), which is the largest singular value

Infinity norm E ||Θ̂−Θ∗||∞, where ||X ||∞ = maxi
∑

j |Xij |, which is
the maximum absolute row sum

True positive rate (TPR) of found non-zero elements, where TPR =
TP/(TP+FN)

True negative rate (TNR) of found zero elements, where TNR =
TN/(TN + FP).
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Estimation Accuracy Comparison

Frobenius Spectral Infinity TPR TNR

Graphical lasso 1.929 0.470 0.720 1 0.902
(0.043) (0.016) (0.041) (0) (0.005)

Our method 1.679 0.416 0.613 1 0.937
(0.050) (0.022) (0.035) (0) (0.003)

Table: Comparison between graphical lasso and our method using three norms
and two correctness ratios. The smaller the norms the better, the larger the
correctness ratios the better. Values are means and values in the parenthesis are
standard deviations of 100 independent runs.

Yiyi Yin (Uni. of Minnesota, Twin Cities) Precision Matrix Estimation December 7, 2017 17 / 20



Future Work

Instead of using the same penalization parameter λ on all the
off-diagonal elements, we are interested in using different penalization
parameter on different off-diagonal elements.

Everything would be very similar as in the previous case.

Θ̂ = argmin
ΘT =Θ

1

2
〈Θ2, Σ̂〉 − tr(Θ) +

∑
1≤i<j≤p

wijθij (8)
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Thanks!
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